- 2025-01-10 17:05:38仪器数据处理
- 仪器数据处理是指对通过各类仪器采集到的原始数据进行整理、分析、转换和存储的过程。它涉及数据的预处理,如去噪、滤波、校准等,以提升数据质量;数据分析,运用统计学方法或算法挖掘数据中的有用信息;数据转换,将数据格式化为适合后续处理或报告的形式;以及数据存储,确保数据的安全性和可访问性。高效的仪器数据处理对于科研、生产和质量控制等领域至关重要,有助于提升决策的科学性和准确性。
资源:13292个 浏览:52次展开
仪器数据处理相关内容
仪器数据处理资讯
-
- 上海通管局建议有序建立数据算力中心 仪器仪表行业如何有序接入数据
- 上海市通信管理局副局长戴斌12月20日表示,算力作为数字经济的新引擎,正在显着提升众多行业的生产效率和质量,为数字经济插上“翅膀”。数字智能”。 实体经济引发产业结构转型。
-
- 苹果研发数据AI芯片 当数据处理全自动成为可能仪器行业如何确定发展方向
- 仪器行业应加速推进智能化升级。传统的仪器设备多数停留在手动操作或半自动化水平,然而,随着AI技术的渗透,未来的仪器设备必将向完全自动化和智能化迈进。
-
- 工信部加快6G万兆网与人工智能研发速度 数据处理能力大幅提高对仪器发展有什么好处?
- 工业和信息化部新闻发言人、总工程师赵志国18日在国务院新闻办新闻发布会上介绍,工业和信息化部将进一步巩固和增强竞争优势和领先地位。信息通信产业围绕高质量发展的首要任务。
仪器数据处理产品
产品名称
所在地
价格
供应商
咨询

- AA-PRO系列原子吸收数据处理工作站
- 国内 北京
- 面议
-
上海昔今生物集团有限公司
售全国
- 我要询价 联系方式

- Indigo200 系列数据处理单元
- 国外 欧洲
- 面议
-
北京多晶电子科技有限公司
售全国
- 我要询价 联系方式

- 高光谱数据处理与分析软件
- 国内 浙江
- 面议
-
杭州高谱成像技术有限公司
售全国
- 我要询价 联系方式

- 环境监测站监测数据处理平台
- 国内 广东
- 面议
-
广东铭沁环保科技有限公司
售全国
- 我要询价 联系方式

- Indigo500 系列维萨拉数据处理单元
- 国外 欧洲
- 面议
-
北京多晶电子科技有限公司
售全国
- 我要询价 联系方式
仪器数据处理问答
- 2023-10-13 15:12:23空白和样品的数据处理
- 空白和样品的数据处理第一种:我是用样品检测值减去空白的检测值,然后带入国标公式计算第二种:我分别把空白检测值和样品检测值带入国标公式,算出结果后,再进行相减理论上这两种结果都是一样的,但是我想了解应该是用哪一种呢?
252人看过
- 2024-12-05 16:24:54圆二色谱仪如何做相关实验?数据处理如何进行?
- 圆二色光谱仪是一种重要的分析仪器,广泛应用于化学、生物学、材料科学等领域。它主要用于测量分子在不同波长下的圆二色效应,能够提供关于分子结构、构象及其相互作用的重要信息。圆二色光谱仪的工作原理圆二色光谱仪的基本原理是基于圆偏振光与样品相互作用后的吸收差异。圆偏振光是具有特定旋转方向的光波,分为右旋圆偏振光和左旋圆偏振光。当这两种光波穿过样品时,分子中不对称结构会对两种光的吸收产生差异,这种差异即为圆二色效应。圆二色光谱仪的应用领域生物分子结构研究:圆二色光谱仪广泛应用于蛋白质、核酸等生物大分子的结构研究。它可以用来探测蛋白质的二级结构,了解蛋白质的构象变化和折叠过程。药物设计与开发:在药物研发过程中,圆二色光谱仪常用于评估候选药物分子与靶标蛋白的结合能力。通过分析药物分子与蛋白质的相互作用,研究人员可以预测药物的稳定性和生物活性,从而优化药物设计。材料科学:圆二色光谱仪不仅限于生物领域,还广泛应用于材料科学中。它能够用来分析高分子材料的结构,尤其是在研究手性材料和聚合物的光学特性时,圆二色光谱仪提供了一个重要的实验手段。圆二色光谱仪实验的操作流程圆二色光谱仪的实验操作通常包括以下几个步骤:样品制备:实验的步是制备合适的样品。对于溶液样品,研究人员需要确保溶液的浓度合适且均匀。对于固体样品,可能需要制成薄膜或其他形式,以确保光线能够充分穿透。仪器校准:在开始实验前,必须对圆二色光谱仪进行校准,确保其测量结果准确。校准工作通常包括设置适当的波长范围和扫描速度,以及调节光源强度。数据采集:在样品放置好并确保仪器设置正确后,开始进行数据采集。圆二色光谱仪会自动扫描不同波长的圆偏振光,并记录光的吸收差异。数据分析:实验完成后,研究人员可以通过专门的软件对收集到的数据进行处理与分析。常见的分析方法包括二级结构预测、构象变化监测以及与其他物质的相互作用研究。圆二色光谱仪的优势与挑战圆二色光谱仪在很多领域具有显著的优势。其非破坏性、灵敏度高、操作简便等特点,使得它成为研究分子结构和动力学过程的重要工具。圆二色光谱仪也面临一些挑战,如对样品浓度要求较高,以及对于复杂系统的分析可能会受到干扰。在实际应用中,研究人员需要结合其他实验技术,如核磁共振(NMR)或X射线晶体学,来进一步验证实验结果。
419人看过
- 2023-06-12 10:35:36转载 | 高光谱遥感数据处理系列(六)监督分类
- 高光谱遥感数据处理系列(六)非监督分类是一种面对数据本身的分类方法,与之相对应的:监督分类,则是面向先验知识的分类方法。监督分类是指给定已知类型的数据,通过建模的方式将这些数据与对应的类型建立映射关系,并将这种关系应用到未知类型的数据上的过程。如果每种类型用一个数字来表示,分类任务可以看做回归分析的一种特例。主界面分区ROI工具监督分类需要有已知类型的数据集作为先验知识进行训练,称为训练集。一般可以通过目视解译,或者实地样方调查的方式获取训练集。构建训练集的方法如下:在主菜单②工具栏中点击打开Region of Interest(ROI) Tool,进行兴趣区选取:ROI工具最基本的ROI选取过程如上图所示,首先选择①工具添加新的ROI范围,在②中调整ROI的名称和颜色,在③中选择绘制ROI的图形形状,④在图上绘制ROI,完成后右键Accept shape type。如果想要绘制带有空洞的图形,可以点击复选框⑤所示的Multi Part复选框,然后在影像上绘制两个叠加的图形,完成后右键 Accept。使用File可以进行ROI图层的读取与保存如果选取好了ROI可以使用Options可以利用对ROI本身进行融合(Merge(Union/Intersection)ROI),计算离散度(Compute ROI Separability),或者使用对ROI范围内的图像进行统计(Compute Statistics from ROIs)。另外也可以使用ROI对图像进行裁剪。除了使用不同形状进行框选,还可以使用像元,自动区域生长,阈值选取等方式产生ROI。在ENVI的帮助文件中详细介绍了这些工具的使用方法。在主界面①菜单栏 Help 中打开-> 在左侧Contents选项卡中的:book:ROIs, Vectors, Annotations,请读者自行查阅。监督分类在训练集选择完毕后就可以进行监督分类,ENVI中提供了多种监督分类的工具,包括:平行六面体(Parallelepiped)最 小距离(Minimum Distance)马氏距离(Mahalanobis Distance)最 大似然(Maximum Likelihood)神经网络(Neural Net)支持向量机(Support Vector Machine)波谱角(Spectral Angle Mapper)这里我们介绍两种监督分类方法,最 大似然法和波谱角方法。01最 大似然法在ENVI的帮助文件中详细介绍了各种分类方法的原理。在主界面①菜单栏 Help 中打开-> 在左侧Contents选项卡中Classification->Supervised Methods中,最 大似然法定义为:最 大似然分类假设每个波段中每个类别的统计数据呈正态分布,并计算给定像素属于特定类别的概率。每个像素被分配到具有最 高概率(即最 大似然)的类别。根据该定义,最 大似然法将每个类别投影到特定的分布上,分类问题被转化为分布相似性问题。在主界面⑤中搜索Maximum Likelihood打开最 大似然分类工具。首先要选择进行训练的数据,需要强调的是,我们选择在上篇文中生成的主成分分析的结果进行分类,而不是影像本身,具体原因在上篇文章中有详细描述。分类结果如下所示:02波谱角方法光谱角映射器 (SAM) 是一种基于物理的光谱分类,它使用 n 维角度将像素与参考光谱进行匹配。该算法通过计算光谱之间的角度并将它们视为维数等于波段数的空间中的向量来确定两个光谱之间的光谱相似性。SAM 使用的端元光谱可以来自 ASCII 文件或光谱库,或者您可以直接从图像中提取它们(作为 ROI 平均光谱)。SAM 比较端元谱向量与 n 维空间中每个像素向量之间的角度。较小的角度代表与参考光谱更接近。在主界面⑤中搜索Spectral Angle Mapper打开光谱角工具,在端元集合(Endmember Collection:SAM)中导入选取的ROI,将上一步选取的ROI所在范围的光谱均值作为特定类别的标准光谱。SAM的本质是将分类问题转化为对比未知类别数据与标准光谱的余弦距离的问题。需要强调的是,我们选择主成分分析的结果进行分类,而不是影像本身,具体原因在上篇文章中有详细描述。分类结果如下所示:小结本文中我们介绍了两种监督分类的方法,相对于非监督分类,监督分类通过融入先验知识,提供了有明确类别的结果,这大大减少了进行后续处理的成本。但是对于遥感应用来说,获取地面真值的成本较高,通过目视解译的方式会不可避免地引入人为误差,给结果带来不确定性。正如上一篇文章提到,数据和特征决定了分类的上限,而分类的方法只能逼近这个上限。如何构建质量高、数量多的训练集,权衡成本是监督分类需要考虑的问题。
334人看过
- 2024-12-27 13:45:04icp-ms仪器类型
- ICP-MS仪器类型:探索不同类型的ICP-MS及其应用 ICP-MS(电感耦合等离子体质谱)作为一种高灵敏度的分析技术,广泛应用于元素分析领域,能够检测样品中微量到痕量的元素。根据不同的应用需求和技术要求,ICP-MS仪器有多种类型,每种类型在设计和性能上都有其独特优势。本文将介绍ICP-MS的主要类型,包括基于不同离子源、探测器及应用的差异,帮助读者全面了解ICP-MS仪器的选择及其具体应用场景。 一、ICP-MS的基本原理与分类 ICP-MS是一种结合了电感耦合等离子体(ICP)源和质谱(MS)分析技术的仪器,通常用于测量溶液中各种元素的浓度。ICP源可以有效地将样品中的元素转化为带电离子,而质谱仪则负责精确地分离和检测这些离子。根据不同的设计要求,ICP-MS仪器可分为几种不同类型,主要区别体现在离子源、质量分析器、探测器等方面。 二、不同类型的ICP-MS仪器 单四极杆ICP-MS 单四极杆ICP-MS是常见的一种类型,采用四极杆质谱分析器来进行离子筛选。其优点在于结构简单、成本相对较低、操作稳定,广泛应用于常规的元素分析。单四极杆ICP-MS能够提供高效的元素定量分析,对于大多数基础化学分析具有较好的适用性,但在处理复杂样品时可能会受到背景干扰的影响。 双四极杆ICP-MS 双四极杆ICP-MS采用双四极杆的设计,能够进一步提升质谱分析的灵敏度与分辨率。通过增加质量分析器,双四极杆ICP-MS在分析复杂矩阵样品时表现更为出色,尤其在精确测量低浓度元素时,具有更高的稳定性和可靠性。此类型仪器常用于环境、食品、制药等领域的高端应用。 三重四极杆ICP-MS 三重四极杆ICP-MS(又称为三重四极质谱)是先进的一种类型,通过三重四极杆配置进行多级质量分析。该系统能够有效背景干扰,进行多重反应监测(MRM),从而实现更为精确的定量分析。这种仪器特别适用于对复杂样品中微量元素的高灵敏度检测,如生物样品、环境监测和医学研究等。 高分辨率ICP-MS(HR-ICP-MS) 高分辨率ICP-MS(HR-ICP-MS)采用高分辨率质谱技术,可以有效分辨相似质量的离子,降低同位素干扰,提高分析精度。该类型仪器适合用于同位素比值分析、环境污染物检测以及地质样品分析。其高分辨率特性使其能够在复杂背景中仍然维持较高的检测能力和准确性。 ICP-MS与其他技术的联用 为了满足更复杂分析需求,一些ICP-MS还与其他技术进行联用,如与气相色谱(GC)、液相色谱(LC)联用,形成ICP-MS/GC或ICP-MS/LC联用系统。这些联用系统可以有效扩展ICP-MS的应用范围,尤其在有机物分析、污染物追踪和临床样品分析等领域展现出重要的应用价值。 三、ICP-MS仪器的应用领域 ICP-MS因其高灵敏度、高通量和多元素同时分析的优势,广泛应用于多个领域: 环境分析:用于检测水、空气、土壤等环境样品中的重金属、污染物。 食品与农业:可用于食品安全检测,检测食品中的有害元素及农药残留。 制药领域:分析药品中的元素组成,确保药品的质量与安全性。 生命科学:在生物样品中对微量元素的检测,支持临床诊断、病理研究等。 四、总结 ICP-MS作为一项高效、的分析技术,凭借其多样化的仪器类型,能够适应不同领域和样品的需求。根据检测精度、样品复杂度和分析内容的不同,选择合适的ICP-MS类型可以极大提高分析效率和结果的准确性。未来,随着技术的不断进步,ICP-MS将在更多行业中展现出更为广泛的应用潜力。对于科研人员和实验室工作者而言,深入理解ICP-MS各类型仪器的特性及其优势,将有助于选择适合的技术方案,实现高质量的分析结果。
225人看过
- 2024-12-30 13:15:11同位素质谱仪仪器参数
- 同位素质谱仪仪器参数:全面解析与应用 同位素质谱仪(Isotope Mass Spectrometer,简称IMS)是一种用于精确分析同位素组成和同位素比率的高精度仪器。它广泛应用于环境科学、化学分析、地质勘探、生命科学等多个领域,用于研究样品中不同同位素的分布情况。本文将详细解析同位素质谱仪的主要参数,帮助读者更好地理解该仪器的工作原理与实际应用价值。 一、同位素质谱仪的基本工作原理 同位素质谱仪的工作原理基于质谱分析技术,通过离子源将样品中的分子或原子转化为带电离子,再通过电场和磁场的作用将这些离子按质荷比(m/z)进行分离,检测到不同同位素的丰度信息。不同同位素的质荷比差异使得它们可以被有效区分,从而获得的同位素比率。 二、同位素质谱仪的主要仪器参数 分辨率 分辨率是同位素质谱仪重要的性能指标之一。它指的是仪器分辨不同质荷比的能力。高分辨率能够精确区分相近质荷比的同位素离子,确保测量结果的准确性。在实际应用中,分辨率通常以“R”表示,R值越大,仪器分辨率越高。 灵敏度 灵敏度表示仪器对低浓度同位素离子的检测能力。对于同位素分析,尤其是在低丰度同位素的测定中,灵敏度是一个至关重要的参数。高灵敏度的仪器能够在复杂样品中准确检测出微量元素及同位素信息。 稳定性 稳定性指的是同位素质谱仪在长时间使用过程中的性能保持情况。良好的稳定性能够确保实验数据的一致性和可靠性,尤其是在高通量分析和长期监测中尤为重要。 线性范围 线性范围是指仪器能够精确测量同位素丰度的浓度范围。在不同的样品浓度下,仪器的响应应该是线性的,这对于高精度分析至关重要。线性范围较宽的同位素质谱仪可以适应不同样品的检测需求。 精确度与重现性 精确度与重现性是衡量同位素质谱仪分析能力的重要参数。精确度反映了仪器测量结果的准确性,而重现性则反映了多次测量结果的一致性。在高要求的科研和工业应用中,这两个参数尤为关键。 三、同位素质谱仪的应用领域 同位素质谱仪广泛应用于多个领域,以下是几种主要应用: 环境科学:通过测定大气、水体、土壤中的同位素比率,评估污染物的来源及迁移路径。 地质勘探:在矿物探测、岩石年代测定等方面,利用同位素比率确定岩石的年龄和矿产资源的分布情况。 生命科学:在代谢研究中,利用同位素标记技术追踪化学反应过程,为疾病研究和药物研发提供重要数据支持。 食品安全:通过同位素分析鉴别食品的原产地、成分等,确保食品质量和安全性。 四、总结 同位素质谱仪凭借其高精度、高灵敏度和广泛的应用领域,在现代科研和工业分析中扮演着不可或缺的角色。其关键参数如分辨率、灵敏度、稳定性等直接影响仪器的分析性能和实验结果的准确性。在选择和使用同位素质谱仪时,深入了解这些参数的作用与特点,能够帮助用户做出更为明智的决策,并提高实验数据的可靠性和重复性。对于从事高精度分析工作的科研人员而言,了解这些参数的具体应用意义,不仅能够提升实验的效率,更能为后续的研究和创新提供有力的技术支持。
189人看过

