
- 2025-01-24 09:31:48方棱镜
- 方棱镜是一种光学元件,具有直角转折光路的功能。它通常由透明材料(如光学玻璃或水晶)制成,具有一对相互垂直的反射面,可使入射光线经过两次全内反射后,沿与入射光线成90度的方向出射。方棱镜广泛应用于各种光学仪器中,如潜望镜、光学测量仪器等,用于改变光路方向、实现图像的转折传输或进行光学系统的布局设计。其优点是结构简单、光路稳定、转折效率高,是光学系统中不可或缺的重要组件。
资源:2300个 浏览:8次展开
方棱镜相关内容
方棱镜产品
产品名称
所在地
价格
供应商
咨询
- 棱镜
- 国内 北京
- 面议
-
北京卓立汉光仪器有限公司
售全国
- 我要询价 联系方式
- 棱镜
- €50
-
孚光精仪(香港)有限公司
售全国
- 我要询价 联系方式
- 五角棱镜
- 国内 北京
- 面议
-
北京卓立汉光仪器有限公司
售全国
- 我要询价 联系方式
- CVI棱镜
- 国外 美洲
- 面议
-
北京先锋泰坦科技有限公司
售全国
- 我要询价 联系方式
- 道威棱镜
- 国内 北京
- 面议
-
北京卓立汉光仪器有限公司
售全国
- 我要询价 联系方式
方棱镜问答
- 2023-07-25 14:27:53ALD在锂电池方面的应用
- 锂离子电池在充放电过程中,锂离子在正负极之间穿梭。在充电过程中,锂离子从正极脱出经过电解液和隔膜到达负极发生反应。在放电过程中锂离子从负极返回正极嵌入正极材料。在循环过程中,正极材料面临许多的问题如自身体积的变化,晶体结构的改变,界面结构的退化等导致的容量衰减。同样的,负极材料也面临着体积膨胀,枝晶的生长导致的负极材料的粉碎溶解、从集流体表面剥离脱离、电接触变差,短路等一系列问题,这些问题导致材料的容量和循环性能严重下降,甚至电池的起火爆炸。 原子层沉积(ALD)薄膜沉积可以合成具有原子级精度的材料,基于自限的膜纳米级的控制,可以实现多组分膜的化学成分控制、大面积的薄膜/工艺的可重复性,具备低温处理以及原位实时监控等技术特征。该技术在锂离子电池,太阳能电池,燃料电池以及超级电容器中都具有广泛的应用。 ALD已经被公认是一种非常有前途的工具可以用来解决锂离子电池以及其他电能储存设备所面临的问题。ALD在锂离子电池中的应用主要分为两个方面:(1)高性能电池电极,隔膜,集流体材料等的制备;(2)表面修饰。其应用主要总结在下图:1、ALD在电极材料及电解质制备中的应用a、ALD 用于负极材料的制备采用ALD技术制备的负极材料主要集中在过渡金属氧化物(TMOs), 如RuO2, SnO2, TiO2和ZnO. 其能量密度比传统的石墨电极高。同时,为了解决TMOs负极材料所面临的挑战,如SnO2在循环过程中较大的体积变化,TiO2低的电子跟离子电导率,由超高电导率的碳基材料如石墨烯,碳纳米管以及Mxenes与TOMs组成的复合负极材料可以很好的融合两者的优势。如:ALD制备的TiO2/CNF-CFP(carbon fiber paper)负极,具有高可逆容量(272 mAh g−1 at 0.1 A g−1),超高倍率性能(133 mAh g−1 at 40 A g−1) 以及超长循环稳定性(≈ 93%容量保持率在10000 圈 at 20 A g−1)。b、用于正极材料的制备通过ALD技术制备的正极材料有非锂化正极如V2O5, FePO4; 锂化正极如LiFePO4, LiCoO2以LixMn2O4。如TiO2/V2O5/@CNT paper正极在100 mA g-1的电流密度下的放电比容量为400 mAh g-1,达到了理论放电比容量。 同时,正极材料V2O5的溶解问题可以通过TiO2层得到,同时不损失容量跟倍率性能。c、SSEs固态电解质的制备归功于其安全性及循环稳定性,全固态锂离子电池近来成为了研究的热点。ALD可以解决全固态锂离子电池所面临的两大关键性挑战:a.高界面阻抗,b.低离子电导率。 最近采用ALD制备的固态电解质有LiPON, Li7La3Zr2O12, LixAlySizO, LixTayOz, LixAlyS and Li2O-SiO2.这些含锂SSEs提供了一个关键的技术平台来制备高能量密度,长寿命以及安全的可充放电池。如下图所示,ALD制备的LLZO为制备3D全固态锂离子微电池提供了一条技术路线。2、ALD在电池电极,隔膜,集流体等表面修饰领域的应用a、ALD对负极表面修饰的应用在负极材料中,ALD表面/界面修饰技术主要为了解决从SEI膜引发的系列问题。在循环过程中,SEI膜的大量形成以及体积变化会引起电极的破坏,从而引发新的暴露面导致容量的衰减。如在石墨负极表面沉积Al2O3可以在电池循环了200圈之后有效地保持98%的首圈容量。锂金属作为负极材料的未来之星,在锂金属的沉积跟剥离过程中,锂枝晶的生长导致电池短路的问题亟待解决。采用ALD技术在锂金属表面构建例如有机/无机复合人工SEI膜,可以有效地抑制锂枝晶的生长。b、ALD对正极表面的修饰作用为了解决正极材料表面所面临的电解液分解,相变,析氧以及过渡金属溶解等问题,采用ALD技术在正极材料表面沉积保护层可以作为物理阻挡层或者HF清除层,从而有效地提高电池的循环稳定性跟倍率性能。在正极材料(层状结构:LiCoO2, LiNixMnyCozO2,富锂(Li-rich)xLi2MnO3·(1 − x)LiMO2(M = Mn, Ni, Co),尖晶石结构LiMn2O4)表面沉积的ALD镀层主要可以分为四类:a金属氧化物:Al2O3, TiO2, ZrO2, MgO, CeO2, Ga2O3; b氟化物:AlF3, AlWxFy; c磷化物:AlPO4,FePO4; d含锂化合物:LiAlO2, LiTaO3, LiAlF4。
230人看过
- 2023-07-21 10:25:31ALD在钙钛矿方面的应用
- “碳达峰”和“碳中和”一直都是能源领域的热点话题,作为助力“双碳”战略的生力军,光伏产业具有举足轻重的地位。目前光伏的主力是硅太阳能电池,它们具有效率高、稳定性好、产业链完备、使用寿命长的优势。然而,晶硅电池的转换效率到达瓶颈,且从硅料到组件至少经过4 道工序,单位制程需要3 天以上,同时还需要大量人力、运输成本等。为了让太阳能的利用更加便捷、高效且廉价,科学界和工业界正在研制新型太阳能电池;钙钛矿太阳能电池就是备受关注的后起之秀,钙钛矿叠层效率极限可达50%,而钙钛矿组件在单一工厂完成生产,原材料经过加工后直接成组件,没有传统的“电池片”工序,大大缩短制程耗时。但是,如何制备大面积且能保持较高效率的钙钛矿太阳能电池,依然是难题,也成了制约其产业化应用的瓶颈。 原速ALD在钙钛矿电子传输层、空穴传输层、钝化层、封装阻水层等领域已取得了突破性进展,获得了业界的认可。为了更高效地服务于世界光伏产业高地,原速也在上海建立了技术研发中心。截止目前,公司已形成服务于钙钛矿电池研发、中试、100MW、 GW级量产的产线ALD技术解决方案。1、ALD-SnO2 应用于钙钛矿电池电子传输层 • ALD 相比于传统沉积技术,在制备超薄膜时具有更优异的均匀性和保形性,以及缺陷更少的优点 2、ALD-NiO 应用于钙钛矿电池空穴传输层 • ALD 可用于制备性能优异的超薄(
137人看过
- 2023-08-18 10:17:30手持光谱仪在贵金属检测方面的应用
- 手持光谱仪在贵金属检测方面有着广泛的应用。以下是几个常见的应用领域: 贵金属鉴别:手持光谱仪可以通过分析贵金属的光谱特征,确定其成分和纯度。通过比对样品光谱与已知贵金属光谱数据库,可以快速识别和鉴别金、银、铂等贵金属。 市场监管:在贵金属市场监管中,手持光谱仪可以帮助监测机构或消费者验证贵金属产品的真伪。通过对样品进行光谱分析,可以确认产品是否含有标称的贵金属成分,防止假冒伪劣产品出现。 防伪溯源:手持光谱仪可以用于贵金属产品的溯源和防伪。通过建立贵金属产品的光谱数据库,可以对产品进行标识,并通过光谱特征进行溯源验证,确保产品的来源和真实性。 公安安全:手持光谱仪可用于犯罪现场勘查中贵金属物证的鉴定。通过采集物证样品的光谱,与参考光谱对比分析,可以确定物证中是否含有贵金属,提供调查破案的线索。 环境监测:贵金属在环境中的存在常常与污染有关。手持光谱仪可以用于现场快速检测土壤、水体和空气中贵金属的含量,帮助环保部门进行环境监测和污染源追踪。 手持光谱仪的应用在贵金属领域具有非常重要的意义,它能够提供快速、准确的贵金属分析结果,为各个领域的工作提供支持和保障。 赢洲科技作为仪景通一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢洲科技为您提供原装零部件替换、维修。
126人看过
- 2023-08-09 15:13:49原子层沉积ALD在纳米材料方面的应用
- 在微纳集成器件进一步微型化和集成化的发展趋势下,现有器件特征尺寸已缩小至深亚微米和纳米量级,以突破常规尺寸的极限实现超微型化和高功能密度化,成为近些年来的热点研究领域。微纳结构器件不仅对功能薄膜本身的厚度和质量要求严格,而且对功能薄膜/基底之间的界面质量也十分敏感,尤其是随着复杂高深宽比和多孔纳米结构在微纳器件中的应用,传统的薄膜制备工艺越来越难以满足其发展需求。ALD 技术沉积参数高度可控,可在各种尺寸的复杂三维微纳结构基底上,实现原子级精度的薄膜形成和生长,可制备出高均匀性、高精度、高保形的纳米级薄膜。 微机电系统(MEMS)是尺寸在几毫米乃至更小的高科技装置,其内部结构一般在微米甚至纳米量级,是一个独立的智能系统,主要由传感器、动作器(执行器)和微能源三大部分组成,广泛应用于智能系统、消费电子、可穿戴设备、智能家居、系统生物技术的合成生物学与微流控技术等领域。MEMS的构造过程需要精细的微纳加工技术,而工作过程伴随着器件复杂的三维运动,其中ALD技术均可发挥重要作用,ALD具有高致密性以及高纵宽比结构均匀性,为MEMS机械耐磨损层、抗腐蚀层、介电层、憎水涂层、生物相容性涂层、刻蚀掩膜层等提供优质解决方案。 磁隧道结(MTJ)是由钉扎层、绝缘介质层和自由由层的多层堆垛组成。在电场作用下,电子会隧穿绝缘层势垒而垂直穿过器件,电子隧穿的程度依赖于钉扎层和自由层的相对磁化方向。随着MTJ尺寸的不断缩小以及芯片集成度的不断提高,MTJ制备过程中的薄膜生长工艺偏差和刻蚀工艺偏差的存在,将会导致MTJ状态切换变得不稳定,并降低MTJ的读取甚至会严重影响NV-FA电路中写入功能和逻辑运算结果输出功能的正确性。ALD技术沉积参数高度可控,可通过精准控制循环数来控制MTJ所需达到的各项参数,是适用于MTJ制造的最佳工艺方案之一。 生物物理学微流体器件可由单个纳米孔和电极组成,也可以由许多纳米孔阵列组成,可同时筛选、引导、定位、测量不同尺度的生物大分子,在生物物理学和生物技术领域中有着广泛的应用前景。生物纳米孔逐渐受到了人们的普遍重视引起了人们的广泛兴趣,尤其是纳米孔作为生物聚合物的检测器件,为一些生物化学现象的基础研究提供了研究的平台。然而生物纳米孔所固有的一些缺陷也很明显,如生物相容性差及微孔的尺寸不可更改等;针对于此,ALD技术可通过表面修饰,改善纳米孔的生物相容性,同时提升抗菌抑菌和促进细胞合成。图一: ALD Al2O3(仅~10 nm)可作为MEMS齿轮高硬度润滑膜图二:ALD应用于低温MEMS器件构造图三:MRAM磁隧道结(MTJ)存储元件图四:一种具有纳米蛛网结构的细菌纤维素膜
117人看过
- 2023-08-24 14:21:37阴极发光设备(SEM-CL)在ZnO纳米线方面的应用
- 由于ZnO具有宽的直接带隙(3,37 eV)、大的激子结合能(60 meV)以及优异的光学、压电和光电性能等特性,越来越多的应用领域认识到这种材料所带来的好处,特别是在涉及半导体、压电、光电和微纳米级高柔性机械性能的应用中,ZnO微/纳米线通常是许多领域的重要材料,包括:a、紫外激光器,探测器和光电二极管:基于ZnO在室温下的宽直接带隙和大激子结合能;b、太阳能电池:ZnO微纳米线具有较大的阳光吸收窗口,而掺杂是调节宽带隙的有效方法;c、纳米发电机:由于半导体之间的强耦合特性,而ZnO微纳米线具有压电性;d、电化学应用:生物和化学传感器;e、光学和机械应用:波导,应变和纳米力传感器。 阴极发光是研究半导体电子能带结构的关键技术。它的应用领域包括缺陷分布分析、载流子动力学和能带结构的表征,这些参数对提高高性能光学和电子器件的设计至关重要。Attolight CL系统的特点引出了一个新的研究领域:1、纳米结构的全面表征:具有高达10nm的空间分辨率,它是研究局部和非局部应变效应最有力的工具之一,将对ZnO微纳米线研究带巨大影响;2、使用时间分辨升级,从而能在不同应变状态下得到ZnO微纳米线的载流子扩散和平均寿命;3、缺陷分析:对CL光谱的比较提供了缺陷级别的信息。
177人看过