2025-01-21 09:30:33光谱可调光源
光谱可调光源能发出特定波长或波长范围的光,输出波长可调节。其原理通常涉及改变光源内部的参数,如电流、温度或光学元件的位置。光谱可调光源广泛应用于光学实验、光通信、生物医学等领域,用于精确控制光的波长,满足科研、检测和治疗的特定需求。其优势在于波长选择灵活、输出稳定、操作简便。

资源:7180个    浏览:88展开

光谱可调光源相关内容

产品名称

所在地

价格

供应商

咨询

标准光谱可调光源灯箱(对色灯箱)
国内 上海
面议
上海昊量光电设备有限公司

售全国

我要询价 联系方式
光谱可调校准均匀光源
国内 上海
面议
上海昊量光电设备有限公司

售全国

我要询价 联系方式
精细可调光谱积分球校准光源
国外 美洲
面议
北京先锋泰坦科技有限公司

售全国

我要询价 联系方式
增强型波长可调红外光源
国内 北京
面议
北京卓立汉光仪器有限公司

售全国

我要询价 联系方式
600~2400nm超宽光谱光源
国内 安徽
面议
合肥脉锐光电技术有限公司

售全国

我要询价 联系方式
2025-05-14 18:15:16比色计光源怎么选择
比色计光源怎么选择:选择合适光源的重要性与关键因素 在比色计的使用中,光源的选择直接影响测量的准确性和可靠性。比色计广泛应用于化学分析、环境监测、食品工业等多个领域,其核心作用是通过测量样品在不同波长下的光吸收情况来分析样品的成分或浓度。正确选择比色计的光源不仅有助于提高测试结果的性,也能延长仪器的使用寿命,确保实验的重复性和稳定性。本文将探讨比色计光源选择的关键因素以及如何根据具体的应用需求来做出合适的选择。 1. 光源种类与应用需求的匹配 比色计光源主要有氘灯、卤素灯、LED等几种类型。不同光源在波长范围、亮度和寿命等方面有所差异,选择时需要根据测试的具体需求来匹配。 氘灯(Deuterium Lamp):常用于紫外光区(190-400nm)的测量。其具有较宽的波长范围,但亮度较低,适用于需要精细紫外测量的实验。 卤素灯(Halogen Lamp):主要用于可见光区(400-700nm)和部分近红外区域。其亮度较高,适合用于日常的比色分析,且光谱稳定。 LED光源:随着技术的进步,LED光源逐渐成为比色计中常见的选择。LED具有较高的能效、长寿命、稳定性好,并且能实现特定波长的精确控制,非常适合快速扫描和多通道应用。 2. 光源的稳定性与一致性 比色计的精确测量依赖于光源的稳定性。如果光源输出光强不稳定,会导致测量结果的波动,影响实验的重复性和准确性。因此,在选择光源时,需要考虑光源的光强稳定性,确保在较长时间内保持一致的输出。 光源的温度稳定性也是一个关键因素。温度的波动可能会引起光源性能的变化,从而影响测量结果。在高精度测试中,选择温度稳定性较好的光源至关重要。 3. 波长范围与实验需求 根据具体的分析需求,选择适当波长范围的光源非常关键。例如,若测试的样品需要在紫外区域进行测量,氘灯可能是佳选择;如果需要覆盖可见光及近红外区域,卤素灯则是更为合适的选择。而LED光源则可以提供更精确的波长选择,适用于多波长的实验需求。 因此,明确实验要求的波长范围,可以有效缩小光源选择的范围,避免不必要的资源浪费。 4. 光源寿命与维护成本 光源的寿命对比色计的维护成本具有直接影响。氘灯虽然具有较宽的波长范围,但其寿命相对较短,需要频繁更换。卤素灯寿命较长,但在长时间使用后光输出可能逐渐衰减。相比之下,LED光源因其较长的使用寿命和较低的维护频率,逐渐成为许多新型比色计的首选光源。 5. 光源功率与能效 光源的功率不仅影响比色计的使用效率,也直接关系到能源消耗和运行成本。LED光源以其高能效和低功耗特点在现代比色计中获得了广泛应用,而卤素灯虽然亮度较高,但功耗较大,可能在长时间使用中产生较高的运行成本。 结语 选择适合的比色计光源是确保实验结果和仪器稳定运行的关键。根据实验的波长需求、光源稳定性、寿命及能效等因素进行综合考量,可以选择合适的光源类型,从而提高测试的准确性和效率。在实际应用中,合理的光源选择不仅能满足实验的需求,还能有效降低运营成本,提升设备的使用寿命。因此,选择适当的光源是比色计分析中至关重要的一环。
98人看过
2025-05-23 13:00:24三坐标测量机光源怎么接
三坐标测量机光源怎么接 三坐标测量机(CMM)是现代精密测量中不可或缺的设备,其应用领域涵盖了汽车、航空航天、电子等多个行业。为了提高测量的精度和效率,光源的配置在三坐标测量机中显得尤为重要。本文将详细探讨三坐标测量机光源的接法,包括不同类型光源的选择、接入方式以及正确配置方法。通过正确的光源连接,不仅能保证设备的稳定性和准确性,还能有效提升测量结果的可靠性。 光源在三坐标测量机中的作用 在三坐标测量机中,光源的主要作用是提供均匀、稳定的光照环境。光源的选择直接影响到测量精度,特别是在接触式测量和非接触式测量中,光源的质量和配置对结果的影响不可忽视。常见的光源类型包括白光、LED光源和激光光源,每种光源都有其特定的优势和适用场景。 三坐标测量机光源的接入方式 接入三坐标测量机的光源主要分为两类:集成光源和外部光源。集成光源通常已经与测量机本身结合,而外部光源则需要通过特定的接口进行连接。常见的光源接入方式包括: 直接接入控制系统:某些三坐标测量机具备内置光源控制系统,光源通过专门的端口与测量机控制系统相连接。在此模式下,光源的亮度和开关可以通过软件进行控制。 外部电源连接:一些光源需要外接电源,这时需要通过电源线和接口将光源连接到设备的电源系统中,并确保电源的电压和功率适配光源的要求。 光纤连接:在非接触式三坐标测量中,激光或光纤传感器的光源常常需要通过光纤连接。这种连接方式能够提供高精度的光源定位和亮度控制,适合用于高精度和复杂的测量任务。 光源类型的选择与配置 白光光源:白光光源提供的是均匀且稳定的照明,适用于大多数常规测量任务。其色温通常在5000K左右,能够提供自然的光线效果,适用于可见光范围内的测量。 LED光源:LED光源因其高效、长寿命和低能耗的特点,已成为三坐标测量机中常用的光源之一。LED光源具有较高的亮度,可以帮助提升测量的精度,尤其是在高分辨率图像采集和低光环境下的应用中。 激光光源:激光光源在高精度测量中具有无可比拟的优势,尤其是在非接触式测量时。激光光源能够精确地聚焦到测量点,提供高对比度的光束,适合用于微小尺寸的精确测量。 正确接入光源的注意事项 选择适合的接口与电源:在接入光源时,确保光源的输入电压与测量机要求相符,以避免损坏光源或测量机。某些光源可能会有特殊的电源要求,必须根据规格进行选择。 光源与传感器的配合:不同的光源与传感器的配合效果也至关重要。确保光源的位置和角度能够大化地发挥其效果,避免因光源不匹配导致的测量误差。 环境适配:测量环境中的温湿度、振动等因素对光源的性能有一定影响。确保光源接入的环境稳定,以保证其长期有效工作。 结语 三坐标测量机光源的正确接入不仅能保障设备的精确度与稳定性,还能提升测量的效率和效果。对于测量精度要求较高的行业,光源的选择和配置至关重要。只有在严格的光源控制和配置下,才能确保三坐标测量机在高精度测量中的优势得到大化发挥。
116人看过
2022-11-25 13:34:50天美讲堂丨测试时间分辨光致发光光谱时激光光源的选择
随着光致发光(PL)研究的发展,对测量微弱的光致发光信号的高灵敏度仪器的需求日益增长。除了具有良好杂散光抑 制能力的光子计数探测器和单色器外,激发样品的光源也是测试时需要考虑的关键因素。皮秒脉冲二极管激光器和亚纳秒LED是时间相关单光子计数(TCSPC)的传统脉冲光源,该技术用于测量ps-μs范围内的PL衰减光谱。爱丁堡仪器公司的时间分辨PL光谱仪可以配备各种类型的脉冲激光器和LED,能够在TCSPC和多通道扫描(MCS)模式下工作,如EPL/EPLED, VPL/VPLED和HPL系列。Fig. 1 EPL-375, VPL-635, and HPL-785 sources from Edinburgh Instruments.EPL&EPLED -皮秒脉冲激光器&LEDsEPL及被广泛应用于时间分辨PL光谱,可提供高达20 MHz的重复频率和典型的脉冲宽度~100 ps,波长从375 nm到980nm。EPLED系列脉冲二极管相比于EPL具有较长的脉冲宽度(典型<1000 ps),但EPLED系列能够覆盖的紫外波长低至250 nm。EPLs和EPLEDs可以在TCSPC及MCS双模式下进行工作。在TCSPC模式下工作,可测试发光寿命的范围为10 ps-50 us,在MCS模式下工作,发光寿命为10ns-400 ms。广泛通用于大多数时间分辨的光致发光实验测试,EPL和EPLED光源的组合可以满足大多数的研究需求。HPL -高功率和高重复率皮秒脉冲激光器HPL是高功率和高重复率皮秒脉冲激光器。可以在高达80MHz的重复频率下工作,并提供两种操作模式:标准及高功率模式。在高功率模式下,HPL激光器产生的脉冲强度能够提高50倍之多。这对于低光致发光量子产率(PLQY)和寿命长于几纳秒的样品十分重要。与EPL的EPLED源类似,HPL可以同时用于TCSPC和MCS模式。VPL&VPLED – 脉宽可调激光器&LEDsVPL和VPLED光源被设计成在MCS模式下工作,是PL衰变寿命从~100 ns到秒的理想选择。它们的输出是一个正方形脉冲,其长度由激光源上的脉宽刻度盘控制,范围从100 ns到1 ms,可选择连续(CW)出光模式。不仅可以作为磷光寿命测试的激发光源,还可以用于连续波模式下稳态光致发光光谱的激发光源。测试实例激发源的选择取决于样品的衰减特性。使用各种爱丁堡仪器脉冲源的热门研究领域的例子如下所示。实例1:钙钛矿样品的时间分辨光谱卤化物钙钛矿是近年来备受关注的一种新型太阳能电池材料。在钙钛矿太阳能电池中,光吸收产生载流子,然后向电极扩散。优化电池的效率涉及到最小化载流子重组,因此需要表征钙钛矿材料的发光寿命。测量钙钛矿的PL寿命具有挑战性。光致发光衰减是由短寿命(ns)组分和长(μs)寿命组分。因此在TCSPC模式下进行测量,以更好地解析快速组分。同时使用较低的激光重复频率来获取衰减的整个尾部。TCSPC和低重复率的结合导致相对较慢的数据采集。此外,部分钙钛矿样品还可能发生降解。因此选择高功率激发源可以大大缩短钙钛矿样品在TCSPC中的采集时间。下面的例子(图2)显示了高功率HPL激光器如何优于相同波长的EPL光源:在相同条件下,HPL激光器的捕获时间大约短20倍。Fig.2 TCSPC decays of a perovskite sample acquired in an FLS1000 spectrometer with (a) EPL-405 laser or (b) HPL-405 laser for excitation: experimental decay (red), Instrument Response Function (blue), and fit result (black). All other measurement conditions were identical. Fitted average lifetime tave and acquisition time tacq indicated in the graph.实例2:近红外成像探针的光致发光寿命生物成像实验通常包括荧光探针,标记样品,并在显微镜下观察。生物成像探针典型理想特性是生物相容性,易于功能化,稳定性高等。量子点是目前最有前途的成像探针材料之一,它们尺寸大小和组成可以调控,以微调其化学性质和激发/发射范围。Ag2S量子点的发射光谱在近红外范围内,适合于生物成像实验。这些样品通常是分散在低浓度的悬浮液中,因此它们的光致发光信号相对较低。此外,光子计数近红外探测器的灵敏度低于可见光探测器。因此建议使用HPL激光器而不是EPL进行测试。图3显示了在1170 nm处Ag2S量子点在甲苯中的TCSPC衰减。样品的亮度较低,用EPL二极管激光器测量需要1小时,相比之下,用HPL-670光源可以在20分钟内获得衰减。Fig.3 TCSPC decay (red) and exponential fit result (black) for Ag2S quantum dots in toluene, excited with an HPL-670 operating in high power mode at 1 kHz repetition rate in an FLS1000 spectrometer. The fitted average lifetime tacq is shown in the graph.实例3:单线态氧的光致发光寿命单重态分子氧(1O2)具有多种实际用途,包括光动力治 疗和合成有机化学。一种广泛的检测1O2的方法是测量它在1270 nm处的发光。然而,单线态氧磷光信号很弱,在低浓度下很难测量。除了使用高灵敏度的近红外探测器外,强大的激光光源也十分重要。1O2的光致发光发生在微秒尺度,因此可以通过使用VPL激光器的MCS测量激发。图4显示了一个典型的例子,用VPL-445激光器在甲苯中激发四苯基卟啉(H2TPP)光敏剂溶液。激光激发的H2TPP将能量转移到溶液中的氧分子,产生1O2,然后缓慢衰变到基态发光。在图4中, VPL源的脉宽为50 us时,发光信号上升,在激光脉冲关闭时,在接下来的100 us时,发光信号衰减。Fig.4 MCS decay (red) and 1270nm exponential Fit Result (black) for a solution of H2TTP in toluene excited with a VPL445 in an FLS1000spectrometer. The VPL source operated produced 50 us pulses at 5 kHz repetition rate. The fit tave lifetime is shown in the graph.实例4:近红外探针的光致发光光谱VPL和 VPLED源是为时间分辨光谱瞬态测试而设计。但它们同时也可以在连续波CW模式下获取样品的PL发射光谱。对于这类型的实验,最常见的配置是将氙灯耦合到激发单色器,但如果激发波长不需要调谐,也可以考虑直接使用VPL激光器。根据所使用的波长和带宽,VPL可以比Xe灯更强。如图5所示,分别使用150 W Xe灯、VPL-635(CW模式)和HPL-670作为激发光源的FS5荧光光谱仪中获得的Ag2S量子点的PL发射光谱。Fig. 5 Photoluminescence emission spectra from Ag2S quantum dots in toluene acquired in FS5 Spectrofluorometer with Xe lamp, VPL-635 and HPL-670 for excitation. An excitation bandwidth of 10 nm was employed for the Xe lamp spectrum. The VPL-635 data were acquired with the laser operating in CW mode, and the HPL-670 data with the laser running at 80 MHz in high power mode. All other measurement conditions were identical between curves. 结论光致发光测试光源的选择取决于要研究的样品类型、可用的检测仪器和用户对采集速度的需求。爱丁堡仪器提供多种脉冲源,广泛的灵活性,以满足其特定的需求,能够实现优化脉冲宽度和能量,并减少采集时间,快速提高测试效率。
1206人看过
2025-05-15 14:45:15单色仪光源参数怎么调
单色仪光源参数怎么调 在科学实验和精密测量中,单色仪作为一种常见的光谱分析仪器,广泛应用于物理、化学、生物等领域。而如何调节单色仪的光源参数,确保其准确性和稳定性,是影响实验结果质量的关键因素。本文将详细解析单色仪光源参数的调整方法,包括如何选择合适的光源类型、调整光源的强度和波长、以及如何优化这些参数以获得佳的光谱输出效果。对于从事光谱分析工作的科研人员而言,掌握这些调节技巧将大大提高实验的精度和可靠性。 1. 选择合适的光源类型 单色仪光源的选择直接影响实验的精度和稳定性。常见的光源类型包括氘灯、钨灯、氙灯等。不同光源具有不同的发光特性,因此需要根据实验的要求来选择。氘灯适用于紫外光谱范围,而钨灯则常用于可见光和近红外光谱。选择合适的光源类型有助于提高光谱数据的分辨率和准确性。 2. 调整光源的强度 光源的强度影响单色仪的信号强弱,进而影响实验结果的清晰度。过高或过低的光源强度都可能导致数据失真。因此,在调节单色仪时,必须根据实验需求合理调整光源的强度。常见的调节方式包括调整光源的电流或使用可调光源。合适的光源强度可以确保实验过程中光谱数据的稳定性和可靠性。 3. 设置波长范围 单色仪的主要功能是将白光分解为不同波长的光谱,因此设置合适的波长范围是至关重要的。在调节光源时,需要精确选择测量的波长范围。不同的实验可能需要不同的波长范围,因此需根据实验的具体要求来选择适当的波长。波长范围的设定不仅影响数据的准确性,还能提升实验效率。 4. 优化光源参数 在选择了合适的光源类型和调整了光源强度后,优化光源的参数是获得佳实验结果的关键。通过调整光源的光束聚焦、位置、以及其他相关参数,可以提高光谱的分辨率和光谱线的清晰度。避免光源长时间的过度使用,以避免其发光强度的衰减。 5. 校准光源 为了确保每次实验的数据准确性,定期对光源进行校准也是十分必要的。光源的衰退、温度变化等因素都会影响其发光特性,因此需要定期检测光源的性能,并在必要时进行校准。通过定期校准,可以消除设备误差,确保实验结果的准确性。 结语 单色仪光源参数的调节是影响实验质量和准确性的关键因素。从选择光源类型到调整光源强度,再到波长范围的设置,每一个环节都至关重要。通过精确的调节和优化,可以有效提升单色仪的性能,确保光谱分析结果的可靠性。在实际应用中,科研人员应根据具体实验需求,灵活调整光源参数,以确保实验数据的精确性和一致性。
127人看过
2025-04-23 14:15:17接触角测量仪的光源怎么开
接触角测量仪的光源怎么开:详细解析 接触角测量仪作为表面科学研究中的重要设备,广泛应用于材料表面性能的测试与分析。光源的正确开启是确保设备正常运行和测量结果准确性的基础。本文将详细介绍接触角测量仪光源的开启方法及其操作注意事项,帮助用户更好地使用该设备进行实验操作,以确保测量数据的可靠性和精确度。 接触角测量仪通常配备了多种类型的光源,如氙灯或LED灯。这些光源的作用主要是为液滴提供必要的照明,以便清晰地观察液滴与固体表面之间的接触角。开启光源的步骤因仪器型号而异,但通常遵循一些基本的操作流程。确保仪器电源已经开启,并且仪器已经完成预热。接着,按照仪器手册中提供的指导,选择适合的光源模式。一般情况下,用户可以通过仪器的控制面板或软件界面进行光源的调节。 在调节光源亮度时,确保照明强度适中,以避免因过强的光照导致测量误差。某些接触角测量仪还提供了自动或手动调节光源位置的功能,以适应不同的实验需求。若仪器配有调光环或聚焦装置,应根据实验的需求调整光源的角度和焦距,以获得佳的光照效果。 光源开启前应检查仪器的光学系统是否清洁,以确保光线的传输不受阻碍。使用过程中,应避免频繁开关光源,以延长光源的使用寿命和保证其稳定性。 正确的光源开启和调整是保证接触角测量精度的关键之一。通过细心操作与调节,不仅可以提高实验的可靠性,还能延长设备的使用寿命。因此,操作人员应根据具体型号的使用手册,严格遵循光源开启的步骤,确保每次测量的准确性和有效性。
86人看过
光片显微镜
生物活性肽
空间光调制器
智慧实验室平
光谱可调光源
模态分析系统
全自动前处理
粉体亲和性
第三方检测
测量锯末稻壳
小鼠胆固醇
近场光学显微
手持XRF
淬火热处理
水质量重金属
磁絮凝处理
EMC测试
电涡流测功机
光束整形镜
杜马斯定氮法
油脂氧化分析
玩具测试报
儿童玩具检测
多仪器并行
电力测功机
相分离温控
机载高光谱相
十环认证费用
PDH稳频
六轴位移台
药店陈列柜
稀释制冷机
光学浮区炉
电参数检测
食品材料检测
参数分析仪