
- 2025-01-21 09:29:42超导纳米线
- 超导纳米线是指具有超导性质的纳米级线材。它在低温条件下电阻为零,展现出优异的电学和磁学性能。超导纳米线在量子计算、高灵敏度探测器等领域具有广泛应用,对于推动科技进步和创新具有重要意义。您是否有其他关于科学仪器的问题或需求?
资源:10378个 浏览:13次展开
超导纳米线相关内容
超导纳米线资讯
-
- 便携式超导纳米线单光子探测器(SNSPD),有谁不爱?
- 光学实验室友好型水冷压缩机(低空气循环,低噪声,低热量输出),偏置和高速放大器电子元件以及易于使用的软件控制库。
超导纳米线文章
超导纳米线产品
产品名称
所在地
价格
供应商
咨询
- QE85%超导纳米线单光子探测器
- 国外 欧洲
- 面议
-
上海昊量光电设备有限公司
售全国
- 我要询价 联系方式
- 超导纳米线单光子探测器
- 国外 美洲
- 面议
-
武汉东隆科技有限公司
售全国
- 我要询价 联系方式
- 昊量/auniontech QE85%超导纳米线单光子探测器
- 国内 上海
- 面议
-
上海昊量光电设备有限公司
售全国
- 我要询价 联系方式
- Scontel超导纳米线单光子探测器(需要制冷腔)
- 国外 欧洲
- 面议
-
上海昊量光电设备有限公司
售全国
- 我要询价 联系方式
- 乙醇铜纳米线
- 面议
-
上海巨纳科技有限公司
售全国
- 我要询价 联系方式
超导纳米线问答
- 2023-08-24 14:21:37阴极发光设备(SEM-CL)在ZnO纳米线方面的应用
- 由于ZnO具有宽的直接带隙(3,37 eV)、大的激子结合能(60 meV)以及优异的光学、压电和光电性能等特性,越来越多的应用领域认识到这种材料所带来的好处,特别是在涉及半导体、压电、光电和微纳米级高柔性机械性能的应用中,ZnO微/纳米线通常是许多领域的重要材料,包括:a、紫外激光器,探测器和光电二极管:基于ZnO在室温下的宽直接带隙和大激子结合能;b、太阳能电池:ZnO微纳米线具有较大的阳光吸收窗口,而掺杂是调节宽带隙的有效方法;c、纳米发电机:由于半导体之间的强耦合特性,而ZnO微纳米线具有压电性;d、电化学应用:生物和化学传感器;e、光学和机械应用:波导,应变和纳米力传感器。 阴极发光是研究半导体电子能带结构的关键技术。它的应用领域包括缺陷分布分析、载流子动力学和能带结构的表征,这些参数对提高高性能光学和电子器件的设计至关重要。Attolight CL系统的特点引出了一个新的研究领域:1、纳米结构的全面表征:具有高达10nm的空间分辨率,它是研究局部和非局部应变效应最有力的工具之一,将对ZnO微纳米线研究带巨大影响;2、使用时间分辨升级,从而能在不同应变状态下得到ZnO微纳米线的载流子扩散和平均寿命;3、缺陷分析:对CL光谱的比较提供了缺陷级别的信息。
179人看过
- 2025-03-25 13:15:14超导量子磁力仪怎么用
- 超导量子磁力仪怎么用:深入解析与应用 超导量子磁力仪(SQUID)是一种高精度的磁场测量仪器,广泛应用于物理学、医学、工程学等多个领域。它能够检测极为微弱的磁场,甚至能精确到小于一皮特的量级。本文将详细介绍超导量子磁力仪的工作原理、使用方法以及在不同领域中的应用,为读者提供全面的了解。 1. 超导量子磁力仪的工作原理 超导量子磁力仪的核心技术基于超导量子干涉效应。通过利用超导材料的零电阻特性,SQUID能够实现极其灵敏的磁场探测。其核心部分是一个由两个超导环和一个弱耦合区域(通常是一个窄小的超导岛)构成的装置。由于量子干涉效应,当外部磁场通过这一区域时,会引起磁通量的变化,从而在仪器的输出端产生相应的电压变化。通过精密的电子设备,这些微弱的电压信号被检测并转换成可用的磁场数据。 2. 如何使用超导量子磁力仪 使用超导量子磁力仪需要对仪器的操作环境和操作步骤有一定了解。SQUID工作时需要在低温环境下进行,因为其超导特性在常温下无法发挥作用。通常使用液氮或液氦来冷却仪器,保持温度在接近零度的范围内。 在操作过程中,首先将待测物体或样品置于SQUID的感应区域。通过调节仪器中的电流或磁场源,精确控制磁场的变化范围。然后,观察和记录仪器输出的信号,数据采集设备会根据这些信号计算出样品的磁性特征。用户可以根据实验的需求,进行多次测量和数据处理,终得出所需的结果。 3. 超导量子磁力仪的应用领域 超导量子磁力仪在多个领域中都有广泛的应用,特别是在高精度磁场测量和医学成像方面。以下是其主要应用: 物理研究:SQUID用于探测和研究微弱的磁场变化,是研究超导、量子力学等高能物理领域不可或缺的工具。 医学成像:在磁共振成像(MRI)技术中,SQUID可用于检测脑电波活动,帮助神经科学研究人员更深入了解大脑功能。 材料科学:SQUID能够分析材料的磁性属性,尤其是在开发新型磁性材料时,提供关键的实验数据。 地球物理勘探:用于地质勘探中,SQUID可帮助科学家检测地下矿物和资源的磁场特征,为矿产资源的勘查提供重要数据。 4. 使用超导量子磁力仪的挑战与前景 尽管超导量子磁力仪具有极高的灵敏度,但其应用仍面临一些技术挑战。低温操作要求设备成本较高,且需要高水平的技术支持和维护。仪器的操作复杂性要求用户具有较强的专业知识和经验。未来,随着技术的发展和设备成本的降低,超导量子磁力仪的应用将更加广泛,特别是在医学诊断和新型材料研发领域。 超导量子磁力仪凭借其的磁场检测能力,成为了现代科学研究中不可替代的工具。理解其原理、正确使用方法以及应对可能的挑战,是保证测量精度和有效性的关键。随着技术的不断进步,我们有理由相信,SQUID将在更多领域发挥更大的作用。
16人看过
- 2020-09-21 11:50:15纳米线/碳纳米管及电子器件测试方案
- 纳米线(Nano wire)为一种横向上被限制在100纳米以下(纵向没有限制)的一维材料,根据组成材料的不同,纳米线可分金属纳米线、半导体纳米线和绝缘体纳米线。作为纳米材料的一种,纳米线具备泰克应用文章《纳米材料综测试综述》中概述的纳米材料全部特性,在电子、光电子和纳电子机械中,纳米线起到很重要的作用。它同时还可以作为合成物中的添加物、量子器械中的连线、场发射器和生物分子纳米感应器等。碳纳米管,又名巴基管,碳的同素异形体,是一种典型的纳米纤碳纳米馆的分类,如下图所示。碳纳米管的应用十分广泛,下图示意出碳纳米管的典型应用。碳纳米管的性质可以从电学、力学、热学、储氢及其他性质五个方面表征,其电学性质如下图。碳纳米管特殊的电学性能,使其被广泛用于制作碳纳米管电子器件。纳米线/碳纳米管及电子器件测试:碳纳米管电子器件主要包括碳纳米管场发射器、碳纳米管FET、单电子晶体管、碳纳米传感器、碳纳米管存储器、碳纳米管开关、碳纳米管集成电路和碳纳米管计算机。纳米线碳纳米管电学性能测试面临的挑战已经在《纳米材料测试综述》讨论过,在此不再赘述。I-V测试是纳米线碳纳米管最基本的电性能测试,SMU是基本测试以及不同种类的碳纳米管,需不同的SM U进行测试,SMU选择依据为:被测样品电阻范围施加或测试的电流范围以及施加或测试的电压范围被测样品所需SMU通道数被测样品是否有脉冲测试需求被测样品是否有电容测试需求SMU选型指南详见《纳米材料测试综述》。纳米线/碳纳米管及电子器件综合测试方案:硬件:4200A-SCS主机4200 SMU模块,模块数量由通道数决定4200PA,选件,依据最小测试电流的数量与SMU模块匹配4225 PMU,选件,依据脉冲需求定,模块数由通道数定,是否加放大器由最小测试电流定4210CVU,选件,有电容特性测试需求时配置纳米探针台(第三方)。软件:Clarius优势:测试范围宽,满足全部种类纳米线/碳纳米管及其电子器件测试需求;多种配置满足不同的应用需求;内置多种纳米线/碳纳米管器件库,调用后自动生成相应器件的测试流程。安泰测试致力于电子电力测试测量行业十二年,专注于电子电力检测设备;公司具备专业的技术支持和选型能力,和泰克吉时利厂家建立了密切稳定的合作关系,立足西北,服务全国的广大客户。欢迎有需求的电子电力工程师来电咨询或者访问安泰测试网 。
359人看过
- 2023-03-20 00:22:5121℃室温超导实现了?有它,你也能测!
- 近日火爆全网的室温超导论文,再次将低温物理科研推到了大众的视野里。自昂内斯1911年发现汞金属的超导电性之后,各种超导材料的研究进入了爆炸式增长,从金属到合金超导体、铜氧化物超导体、重费米子超导体、有机超导体、铁基超导体以及其他氧化物超导体等,超导温度也在不断提升。然而即便是常见的高温超导材料仍要接近液氮温度才能够实现,使得超导材料距离人们生活中大规模应用仍然存有相当的距离。而近日在美国物理学会春季会议,罗彻斯特大学的兰加·迪亚斯团队宣布在1GPa压强下,在镥-氮-氢体系中实现了室温超导,使整个物理学界沸腾了。这篇工作也刊登于Nature期刊,3月8日在线发表。图1. 兰加·迪亚斯在美国物理学会春季会议的报告 相比于之前的氢化物超导,此次氮掺杂镥氢化物超导存在两个惊人的发现:一是该超导材料的临界超导温度达到了21度,二是压力仅需要1万个标准大气压(1Gpa)。这与之前动辄上百Gpa压力的极端高温超导条件天差地别,具有极高的应用潜力。 如此震惊世界的发现,作者在进行超导判定时也非常谨慎,分别从电、磁、热三个维度进行了超导转变实验验证。氮掺杂镥氢化物随着压力的增加,会发生两次明显的可视相变,起初样品无超导性,呈现蓝色(I相)。随着压力增加到3kbar,样品进入超导相(II相),颜色也转变为粉红色。进一步提升到32kbar以上,样品再次进入一个无超导金属相(III相),样品颜色此时也转变为鲜艳红色。图2:镥-氮-氢体系超导与可视相变 对不同压力下的超导相进行电输运测量,零外场条件下,温度依赖的电输运测量表明,随温度下降,电阻会存在一个陡然下降至零的行为,超导转变宽度与转变温度的比值ΔT/ΔTC在0.005至0.036范畴,可以在GL理论的脏极限范畴解释。零外场下,V-I特性曲线在超导转变温度上下明显不同:超导转变温度之上,材料具有线性V-I响应,符合欧姆定律;超导转变温度之下,电压几乎不可测量,并具有非线性响应。图3. 镥-氮-氢体系温度依赖的电输运测量和V-I特性曲线 对于超导转变判定,除零电阻行为外,更为关键的是迈斯纳现象的发现。本文磁学测量方面,温度依赖的磁化强度曲线和M-H曲线基于Quantum Design PPMS系统完成,并搭配了相应的磁测量高压包选件。在8kbar压强下,场冷、零场冷条件下磁化强度的测量表明了一个清晰明确的迈斯纳现象的存在,确定超导转变为277K。宽超导可能源于高压包不同压力梯度或者材料的不均匀性。磁测量获得的超导转变与电阻测量结果相吻合。除直流磁化率外,交流磁化率也明显观测到超导转变带来的抗磁性。图4. 镥-氮-氢体系直流与交流磁化率测量 而热输运方面,比热测量同样是验证超导转变的重要途径,根据BCS理论,超导转变伴随有能带打开能隙,会导致比热激增。本文采用了新型交流量热技术,获得了不同压力下,材料比热随温度的演变关系,可以看出,比热具有明显的不连续特征,由此获得的超导转变温度也与电、磁测量相吻合。图5. 镥-氮-氢体系的高压比热测量 本文通过电、磁、热三个维度的实验验证了镥-氮-氢体系在1GPa下接近室温的超导电性,但关于其内容见解,各路大神众说纷纭。此篇文章中,使用了PPMS磁测量高压腔组件,能够实现1.3GPa压力下的等静压磁学测量。相信在未来的超导探索工作中,PPMS的磁学测量和电学测量高压腔能够发挥更多更重要的贡献。图6:Quantum Design 高压磁学和电学测量功能组件相关产品:综合物性测量系统-PPMS:https://www.yiqi.com/zt2203/product_351395.html完全无液氦综合物性测量系统-DynaCool:https://www.yiqi.com/zt2203/product_351355.html
124人看过
- 2023-06-08 17:52:34邀请函|飞纳电镜邀您参加微纳科技与先进材料创新大会 2023
- 复纳INVITATION微纳科技与先进材料创新大会(2023)将于 6 月 10 日 - 12 日在重庆举办。本次会议旨在凝聚优势力量、加强纳米科学与微纳制造技术的基础研究与应用研究,促进多学科交叉融合,促进先进材料产业化的发展。时间:2023 年 6 月 10 日 - 12 日地点:重庆两江云顶大酒店复纳科技展位号:7 号新兴的微纳材料在电子、通信和物联网、能源存储、化工和燃料生产、医疗保健、药物输送等领域应用广泛。纳米材料的性质与其组成和表面形貌有很大的关系,复纳科技拥有一系列高精尖的分析检测仪器与先进的解决方案,可以对纳米材料进行分析表征和改性。欢迎各位老师同行莅临【7】号展位,和我们一起探讨交流!庄思濛 复纳科技产品经理报告时间:6月12日 16:05-16:25本次会议中,复纳科技产品经理庄思濛将在“微纳技术在新能源电池领域中的应用技术”分会场带来《电池粉末原子层沉积包覆改性及原位电镜表征方案》的主题报告。1、Phenom-飞纳台式扫描电镜飞纳台式扫描电镜操作简单,效率高,成像质量高,其优异的低真空模式可实现无需喷金直接观察不导电样品。最 新的第二代场发射扫描电镜 Phenom Pharos G2 分辨率优于 1.5nm,是分辨率最 高的台式扫描电镜,是纳米材料表征的强有力工具。Phenom Pharos G2飞纳台式场发射扫描电镜Phenom XL G2飞纳台式扫描电镜大样品室卓 越版Phenom ProX飞纳台式扫描电镜能谱一体机2、Forge Nano-原子层沉积系统ALD 原子层沉积技术已被证明可用于多种组分以及纳米结构的制备,包括单原子 / 团簇催化剂、锂电材料表面包覆等等。Forge Nano 设备基于 ALD 工艺可实现从毫克到千吨级的粉末包覆处理量,能够有效提高电池化学性能与安全性。3、DENSsolutions-TEM 原位实验方案DENS 产品可以为 TEM 样品施加外界刺激,实现在 TEM 中引入气、液、热、电等多种条件,捕捉 TEM 样品在真实环境下的动态现象。目前提供的四种原位实验方案:Wildfire TEM 原位加热方案、Lightning TEM 原位热电方案、Climate TEM 原位气相加热方案和 Stream TEM 原位液相加热 / 加电方案。Wildfire 原位加热样品杆Lightning 原位热电样品杆Lightning 原位热电样品杆Stream 原位液相加热/加电样品杆Climate 原位气相加热样品杆4、VSParticle-全自动纳米研究平台VSParticle 设备采用火花烧蚀制备纳米颗粒的技术,可对产生的颗粒进行粒径的控制,从而获得不同粒径中位值的单分散纳米气溶胶。此外该技术也能用于进行快速打印以及粉末表面的纳米沉积。欢迎各位老师莅临展位与我们探讨交流,我们将随时为您提供专业的解答与支持,现场也有精美小礼品相送噢!
148人看过