- 2025-01-21 09:30:56甲烷磺酸
- 甲烷磺酸是一种有机强酸,化学式为CH₃SO₃H,具有无色透明、高纯度、低毒、强腐蚀性等特点。它易溶于水,也溶于醇和醚,是一种重要的化工原料和溶剂。甲烷磺酸在医药、农药、染料、电镀、化学分析等领域有广泛应用,如用作酯化、磺化、硝化等有机合成的催化剂和溶剂,也用于合成甜味剂、表面活性剂等。此外,它还是一种性能优良的锂离子电池电解液添加剂,能提高电池的循环性能和低温性能。
资源:10006个 浏览:50次展开
甲烷磺酸相关内容
甲烷磺酸产品
产品名称
所在地
价格
供应商
咨询

- 甲烷磺酸溶液
- 国外 美洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式

- 氨基甲烷磺酸, ≥97.0%
- 国外 欧洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式

- 氨基甲烷磺酸, ≥97.0%
- 国外 欧洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式

- 甲烷磺酸
- 国内 北京
- 面议
-
北京北方伟业计量技术研究院
售全国
- 我要询价 联系方式

- 五氧化二磷-甲烷磺酸
- 国外 欧洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式
甲烷磺酸问答
- 2023-03-08 15:54:48精确控制自由基类型,实现特定选择性的光催化甲烷氧化
- 1. 文章信息标题:Enabling Specific Photocatalytic Methane Oxidation by Controlling Free Radical Type中文标题:精确控制自由基类型,实现特定选择性的光催化甲烷氧化页码:2698-2707DOI:10.1021/jacs.2c13313 2. 文章链接https://doi.org/10.1021/jacs.2c133133. 期刊信息期刊名:Journal of the American Chemical SocietyISSN:1520-51262021年影响因子:16.4分区信息:中科院一区涉及研究方向:光催化4. 作者信息:第 一作者是蒋雨恒、李思扬、汪时崐、张银。通讯作者为 唐智勇研究员。5.仪器型号:升级版CEL-HPR100T在温和条件下利用水和氧气选择性转化甲烷生成甲醇和甲醛是一条用于合成液态化学品的理想途径。然而,在保证高产率的前提下调控反应的选择性仍然是一个巨大的挑战,这是由于控制目标产物的形成和过氧化反应的动力学是非常困难的。近日,国家纳米科学中心唐智勇课题组提出了一种通过合理设计催化剂来精确控制反应过程中形成的自由基的高效途径,借此首次在甲烷氧化反应中同时实现了甲醇和甲醛的高产量和高选择性。通过调节Au/In2O3催化剂中的能带结构和活性位点的尺寸(单原子或纳米粒子),分别形成了两种重要的自由基•OOH和•OH,这导致甲醇和甲醛通过不同的反应路径生成。在室温下光催化甲烷氧化反应3 h后,In2O3负载Au单原子催化剂(Au1/In2O3)对甲醛的选择性高达97.62%,产率为6.09 mmol g-1,而In2O3负载的Au纳米粒子催化剂(AuNPs/In2O3)对甲醇的选择性高达89.42%,产率为5.95 mmol g-1。本工作为设计复合光催化剂实现高效和选择性甲烷氧化开辟了新途径。1. 本工作提出了一种全面的策略,通过原子精确的方式同时控制半导体的能带结构和负载的助催化剂的尺寸,以实现高效和选择性的光催化甲烷氧化。2. 我们有意选择了立方In2O3,因为它的价带位置可以阻止氧化水到•OH的反应(方程3)。因此,•OOH和OH只由O2还原反应产生(方程1和2),同时,所有生成的空穴都用于甲烷氧化为•CH3自由基(方程4)。3. 考虑到负载助催化剂的尺寸可以调节氧气还原反应的选择性,Au是良好的电子受体,我们将Au单原子或Au纳米颗粒负载在In2O3上作为氧气吸附和还原的活性位点,分别生成•OOH或•OH自由基实现选择性的甲烷转化。因此,我们设计了•CH3 + •OOH → CH3OOH → HCHO (方程5)和 •CH3 + •OH → CH3OH (方程6)的反应路径用于甲烷选择性氧化。示意图1 光催化甲烷氧化的自由基反应途径以及对应的反应方程式。以往的工作主要关注尽可能地提高活性自由基中间体的浓度,我们关注的是对形成自由基类型的精确控制。由于In2O3载体具有合适的价带位置,高于水氧化到•OH的电位,却低于甲烷氧化为•CH3的电位,所以价带上的空穴全部用于将CH4转化为•CH3。同时,Au单原子和Au纳米颗粒上端式和桥式构型吸附的氧气被转移的电子还原,分别导致了•OOH和•OH的选择性形成。因此,优于之前所有的报道,我们获得了在模拟太阳光照射下利用Au/In2O3复合材料实现高活性和选择性的甲烷氧化为甲醛和甲醇。这项工作不仅为调节自由基生成机理提供了新的认识,而且为设计应用于重要且具有挑战性的反应的光催化剂提供了新的策略。产品推荐:CEL-HPR+光催化反应釜CEL-HPR+光催化反应釜高端版采用蓝宝石大视窗,采用双点控温(无冲温),标配控温搅拌和400mm行程自动升降平台;技术上采用最 新的卡环法兰结构,模块加热,实现恒温定时和运行定时功能、在线取液体样和气体样品。更安全的设计,可24小时不间断工作。
291人看过
- 2024-04-13 23:37:12为啥典甲烷和钠汞齐再密封试管中反应完后没看任何DMM
- 你用溴甲烷合成时用了催化剂吗,是不是液化接触直接迅速生成?为什么乙酸甲酯直接和钠汞齐反应了?不是催化剂吗,还有钠汞齐配比一定要2:1吗
165人看过
- 2022-06-06 22:43:38二氧化碳置换出甲烷是什么变化?低场核磁技术
- 二氧化碳置换出甲烷是什么变化?低场核磁技术天然气水合物是由天然气(主要是甲烷)和水在较低温度和较高压力条件下形成的笼形结晶化合物,具有分布广、储量大和能量密度高等特点,是一种具有巨大潜力的能源资源。二氧化碳置换出甲烷的方式既能够在保证水合物地层稳定性前提条件下获得丰富的甲烷,又能够埋存大量二氧化碳以减轻温室效应,是一种具有经济和环境双重效益的开采方法。低场核磁技术可以用于二氧化碳置换出甲烷实验研究。二氧化碳置换出甲烷是在特定的温度和压力范围内,通过注入二氧化碳将水合物中甲烷置换出来并进行收集的一种方法,主要是物理变化。二氧化碳置换出甲烷的机理:二氧化碳置换出甲烷的概念起源于减少温室气体排放的CO2煤层封存技术。理论上,CO2比CH4优先吸附,通过注入CO2可实现煤层气100%的zui终采收率;但实际上,由于复杂的煤层地质特征和工程技术所限,一般可使采收率提高25%。目前的实验发现置换速率仅在实验初期比较可观,随后迅速减小,置换效率较低,不能满足商业化开采的需求。此外,CO2置换反应微观机理研究仍处于初级阶段,对置换反应物理过程的理解仍然不清楚。已有的实验研究探讨了温度、压力、盐度、甲烷水合物饱和度和CO2注入形态等因素对置换效率的影响,获得了一些值得借鉴的结果,但是对于CO2置换法的物理过程的理解仍显不足。因此,基于低场核磁技术的二氧化碳置换甲烷实验研究对于实际应用具有重要意义。二氧化碳置换出甲烷实验过程中主要包括CO2水合物合成过程和甲烷水合物分解过程。其中,甲烷水合物分解方式包括吸热(二氧化碳水合物合成释放热量)和降压两种方式。表层CO2水合物合成过程以及表层甲烷水合物分解过程通常远远快于溶解态气体在孔隙水或冰中的扩散过程,而后者直接决定了深层甲烷水合物的分解速率。低场核磁技术检测二氧化碳置换出甲烷的变化:利用低场核磁技术探测样品中CH4中H元素的含量和分布而CO2分子中没有H不产生NMR信号,当测样中吸附气体含量和状态发生改变时,可以通过低场核磁技术测得的T2谱中CH4的低场核磁信号来判断,进而分析各种气体间的竞争吸附关系和演化规律。
328人看过
- 2022-06-01 23:56:21二氧化碳置换甲烷属于什么变化?低场核磁技术
- 二氧化碳置换甲烷属于什么变化?低场核磁技术天然气水合物是由天然气(主要是甲烷)和水在较低温度和较高压力条件下形成的笼形结晶化合物,具有分布广、储量大和能量密度高等特点,是一种具有巨大潜力的能源资源。二氧化碳置换甲烷的方式既能够在保证水合物地层稳定性前提条件下获得丰富的甲烷,又能够埋存大量二氧化碳以减轻温室效应,是一种具有经济和环境双重效益的开采方法。低场核磁技术可以用于二氧化碳置换甲烷实验研究。二氧化碳置换甲烷是在特定的温度和压力范围内,通过注入二氧化碳将水合物中甲烷置换出来并进行收集的一种方法,主要是物理变化。二氧化碳置换甲烷的机理:二氧化碳置换甲烷的概念起源于减少温室气体排放的CO2煤层封存技术。理论上,CO2比CH4优先吸附,通过注入CO2可实现煤层气100%的zui终采收率;但实际上,由于复杂的煤层地质特征和工程技术所限,一般可使采收率提高25%。目前的实验发现置换速率仅在实验初期比较可观,随后迅速减小,置换效率较低,不能满足商业化开采的需求。此外,CO2置换反应微观机理研究仍处于初级阶段,对置换反应物理过程的理解仍然不清楚。已有的实验研究探讨了温度、压力、盐度、甲烷水合物饱和度和CO2注入形态等因素对置换效率的影响,获得了一些值得借鉴的结果,但是对于CO2置换法的物理过程的理解仍显不足。因此,基于低场核磁技术的二氧化碳置换甲烷实验研究对于实际应用具有重要意义。二氧化碳置换甲烷实验过程中主要包括CO2水合物合成过程和甲烷水合物分解过程。其中,甲烷水合物分解方式包括吸热(二氧化碳水合物合成释放热量)和降压两种方式。表层CO2水合物合成过程以及表层甲烷水合物分解过程通常远远快于溶解态气体在孔隙水或冰中的扩散过程,而后者直接决定了深层甲烷水合物的分解速率。低场核磁技术检测二氧化碳置换甲烷的变化:利用低场核磁技术探测样品中CH4中H元素的含量和分布而CO2分子中没有H不产生NMR信号,当测样中吸附气体含量和状态发生改变时,可以通过低场核磁技术测得的T2谱中CH4的低场核磁信号来判断,进而分析各种气体间的竞争吸附关系和演化规律。
380人看过
- 2017-03-27 01:58:48三氟甲烷磺酸可以用氢氧化钾中和吗
506人看过
- 产品搜索
- TANGO
- 高频电压
- 低频电磁场辐射测试仪
- 摩擦磨耗
- 烘干机 毛絮收集
- 探测器模块
- 牛津纳米
- 高精度测斜仪
- amiami
- 便携式气溶胶采样器
- 雅马拓 高压
- Slurrymax
- 盐酸-异丙醇标准滴定溶液
- JC2000DM
- Slurrymax4*4
- FI005-HYM-2R
- mee
- 激光拉曼光谱购置必要性
- OMCTS BD-I
- HZPK frd-1000
- 血pcr
- 半球型电子能量分析器
- Synergy TDC
- 二手1080ti价格
- 宏睿HR-O160S
- ADKS-I-H-2S
- 徕卡GS18倾斜机
- 高压扩散器
- gentex 记录仪的app
- Leica VT1000
- 土壤研磨筛分仪
- multiplus-ii
- 托利多c30称重仪表说明书
- 污泥泵
- 偏光镜
- 多功能热舒适度测试仪

