2025-05-16 02:38:26光催化活性评价系统
光催化活性评价系统是一种用于评估光催化剂性能的设备。该系统通过模拟光照条件,对光催化剂的活性进行准确测试,具有测试准确、操作简便、适用范围广等特点。它广泛应用于材料科学、环保、科研等领域,为光催化剂的研发、性能优化及产业化应用提供了重要的技术支持。

资源:14896个    浏览:75展开

光催化活性评价系统相关内容

产品名称

所在地

价格

供应商

咨询

CEL-PAEM-D8Plus光催化活性评价系统
国内 北京
¥154320
北京中教金源科技有限公司

售全国

我要询价 联系方式
CEL-PAEM-D8BP 全自动光催化活性评价系统
国内 北京
面议
北京中教金源科技有限公司

售全国

我要询价 联系方式
光催化活性评价系统
国内 山东
面议
北京鑫视科科技有限公司

售全国

我要询价 联系方式
中教金源全自动光催化活性评价系统CEL-PAEM-D8BP
国内 北京
面议
合肥海瑞克斯科技有限公司

售全国

我要询价 联系方式
气固光热耦合光催化反应系统
国内 上海
面议
上海岩征实验仪器有限公司

售全国

我要询价 联系方式
2025-02-14 15:00:13光学成像系统评价参数怎么看?
光学成像系统评价参数 光学成像系统作为现代科学技术的重要组成部分,广泛应用于医学成像、遥感监测、工业检测、生命科学等多个领域。为了保证这些系统在实际应用中的优越表现和度,必须通过一系列科学合理的评价参数来进行评估。本文将围绕光学成像系统的主要评价参数展开探讨,分析其对成像质量的影响,并提供如何优化这些参数以提升系统性能的见解。 光学成像系统的评价参数包括分辨率、对比度、噪声、色彩还原性、透过率和畸变等几个方面。每一项参数都对成像效果产生重要影响,并且在不同的应用场景中,优先级也会有所不同。因此,理解这些评价参数并在实践中进行优化,对于提高光学成像系统的应用价值至关重要。 分辨率是评价光学成像系统的重要指标之一,通常用来衡量系统在空间上还原细节的能力。高分辨率意味着能够捕捉到更精细的图像细节,但同时也对光学系统的设计和制造精度提出更高要求。分辨率的评估标准一般通过测量系统能够识别的小物体细节来进行,这一指标直接影响到图像的清晰度与细节表现。 对比度指的是成像系统中亮暗部分的差异程度,它决定了图像的清晰度与层次感。在光学成像中,高对比度可以使图像更加生动、层次分明,尤其在低光照环境下尤为重要。通过增加光源亮度或者优化光学系统的光学性能,能够有效提升成像的对比度,使得图像质量进一步提高。 噪声则是另一个关键参数,它描述了成像过程中可能出现的干扰信号。噪声的来源可能是环境因素、传感器的技术限制、信号传输过程中的损耗等。噪声会导致图像质量下降,影响到细节的还原。因此,在光学成像系统中,通过使用高灵敏度的传感器、优化信号处理技术,可以有效降低噪声的影响,确保成像质量更加真实和准确。 色彩还原性是指光学成像系统能够准确再现物体真实颜色的能力。尤其在医学影像、艺术作品复制等领域,色彩还原性对图像的真实性和应用价值具有重要意义。色彩还原的准确性不仅依赖于光源和传感器的质量,还与图像处理算法密切相关。因此,在光学成像系统中,色彩还原性常常通过精确的校正和算法调整来进行优化。 透过率是衡量光学元件(如镜头、滤光片等)透光能力的参数。高透过率意味着更多的光能够通过系统,这对于低光照条件下的成像至关重要。提高透过率不仅可以改善图像亮度,还能提高系统在各种环境下的适应性,尤其是在需要高灵敏度和快速响应的应用中。 畸变是指光学成像系统中图像几何形状的失真,通常表现为直线变弯或比例失衡。畸变的产生与光学元件的设计密切相关,尤其是在高倍率成像系统中更为明显。通过合理设计光学元件、使用补偿算法等方式,可以有效减小畸变,确保成像效果更加精确。 光学成像系统的评价参数不仅涉及成像质量的各个方面,也反映了系统在特定应用中的适应性与优化空间。只有全面理解这些参数,并结合实际需求进行调节,才能实现光学成像系统的佳性能。在实际应用中,综合考虑分辨率、对比度、噪声、色彩还原性、透过率与畸变等多个因素,能够有效提升成像质量,并满足不同领域对精确成像的高要求。
169人看过
2023-07-03 11:40:41提高采收率机理评价设备
评价设备是用于评估油田采收率提高机理和效果的工具和设备。以下是一些常用的评价设备:1.岩心分析设备:通过获取岩心样品,并对其进行物理性质、孔隙结构、渗透率等方面的测试和分析,可以了解岩石的储集能力、油水相渗流规律等信息,从而评估采收率的潜力和机理。2.岩石物理实验设备:使用岩石物理实验设备可以模拟油藏中的物理过程,如孔隙介质中的流体流动、饱和度变化等。这些设备可以用于研究不同的采收率提高技术的效果,如水驱、气驱、化学驱等。3.模拟实验设备:模拟实验设备通过模拟油藏的地质条件和物理过程,如渗流实验装置、油藏模拟器等,可以评估不同的采收率提高技术的影响。这些设备可以模拟实际采油过程中的流体行为和相互作用,以及采收率的变化。4.油藏动态监测设备:通过使用地下测井技术、生产数据监测和分析装置等,可以实时或定期地监测和记录油藏的动态变化,如产量、压力、渗透率等。这些设备可以提供实际采收率提高效果的反馈信息,并评估不同的采收率增强技术的有效性。5.数值模拟软件:数值模拟软件通过建立油藏的数学模型,模拟不同的采收率提高技术在油藏中的效果。这些软件可以预测和评估不同操作方案对采收率的影响,优化采收率提高策略。综合使用以的表述,核磁共振设备是较符合的设备。低场核磁共振技术作为不断开发的前沿技术手段,基于对氢质子信号的优秀捕捉能力以及配套的可以真实模拟实际采油过程中的流体行为和相互作用,以及采收率的变化。低场核磁实验装置架构图
198人看过
2022-04-28 07:13:31HPRS-PEC250光催化光电反应釜
优势特点:HPRS-PEC250光催化光电反应釜高端版采用蓝宝石大视窗,标配控温搅拌、耐压电极、铂电极夹、自动升降平台;技术上采用最 新的卡环法兰结构,模块加热,实现恒温定时和运行定时功能、在线取液体样和气体样品。更安全的设计,可24小时不间断工作。产品应用:光电协同作用提高光催化材料的催化活性。将催化剂固定在导电基体上,同时外加-偏压抑 制光生电子和空穴的复合,从而发展出一种新型的技术—电化学辅助光催化技术,即光电催化技术。这是一种有效促进光生电子和空穴分离,并利用光电协同作用增强光催化氧化技术,以光催化剂作为光阳极,对其施加一定的偏压,光生电子就会迁移至外电路,从而抑 制光生电子和空穴的复合,空穴在催化剂表面积累,并进一步提高催化剂的活性。光电化学还原CO2,半导体在光照作用下,利用阴极材料在电化学作用下都能产生催化活性的特性,达到光电结合催化还原CO2的目的。
313人看过
2023-02-15 14:27:47肿瘤疫苗生物学活性评估
肿瘤疫苗背景肿瘤疫苗,是一种具有预防和治 疗潜力的有吸引力的替代免疫治 疗选择,是近年研究的热点之一。针对肿瘤相关抗原(Tumor-associated antigen,TAA)或肿瘤特异性抗原 (Tumor specific antigen,TSA) 的疫苗可以特异性地攻击和破坏抗原过表达的恶性细胞,并由于免疫记忆而实现慢性治 疗反应。因此,与其他免疫疗法相比,癌症疫苗提供了特异性、安全性和可耐受的治 疗。根据肿瘤抗原的组分,癌症疫苗大致可以分为四种类型:基于 DNA 的疫苗,基于 RNA 的疫苗,基于多肽的疫苗和基于免疫细胞的疫苗。FDA 批准的首 个个性化肿瘤疫苗 PROVENGE (Sipuleucel-T) 是一种基于免疫细胞的疫苗,用于激素难治性前列腺癌的治 疗。除此之外,Moderna,BioNTech 都在布局基于 mRNA 的肿瘤疫苗。图 1 肿瘤疫苗抗原呈递平台示意图肿瘤疫苗有效性评估方法生物体接种疫苗后,肿瘤抗原被带到淋巴结,进而激活抗原特异性的 B 细胞和 T 细胞,活化的 B 细胞产生的抗体及活化的效应 T 细胞会使肿瘤内胀并诱导肿瘤细胞死亡。图 2 肿瘤疫苗诱导的免疫反应示意图如何有效的评估肿瘤疫苗的有效性是一个非常值得探讨的问题,常用的肿瘤疫苗有效性验证的方法,包括细胞因子检测、CTL 活性检测、T 细胞活化标志物检测、抗体滴度检测、ADCC 检测等。1、细胞因子检测细胞因子是由免疫细胞经过刺激而合成并分泌的小分子蛋白质,在免疫应答中起着非常重要的作用,因此可以通过细胞因子的分泌能力来反应疫苗诱导的细胞免疫的水平。常见的细胞因子有白介素 (IL) 、干扰素 (IFN)、 肿瘤坏死因子 (TNF) 等。下面比较了几种常见的检测方法。ELISA 是一种非常经典的细胞因子的检测方法,例如在王晓东等人发表的关于胃癌疫苗研究的文章中,提到了用 ELISA 的方法检测接种疫苗后小鼠骨 髓源树突状细胞(BMDCs)分泌细胞因子的能力,检测方法如下:BMDCs 在含有 10ng/mL GM-CSF 和 10ng/mL IL-4 的 X-vivo 15 培养基中培养,37℃下培养 6 天,然后以每孔 5×104 细胞的密度在 96 孔板中接种。以 5µM 或 10µM 的最 终浓度加入疫苗抗原,孵育 24 小时。使用小鼠 TNF-α 和 IL-12 p70 ELISA Ready-SET-Go 试剂组定量培养上清中的 TNF-α 和 IL-12 。首先在 4℃下用捕获抗体包被 ELISA 板过夜,然后在室温下依次加入阻断液、细胞培养上清和检测抗体,孵育 1h 。 最 后加入终止液和显色剂,用酶标仪 (BioTek) 在 450nm 处记录 OD 值。检测结果如下:从检测结果可以看出,T7(TLR7 激动剂)的存在可以显著提升 ML/MB 抗原诱导的免疫反应。图 3 ELISA 法测定小鼠骨 髓树突状细胞 (BMDCs) 分泌TNF-α (a) 和 IL-12 (b) 的水平Ankita Leekha 等人发表的关于 SRAS-COV2 疫苗文章中,提到了用 ELISPOT 的方法评估细胞因子的分泌水平,可以作为参考。具体方法如下:从小鼠中分离脾细胞和肺细胞,使用小鼠 IFNγ ELISpot 基础试剂盒和小鼠 IL4 ELISpot 基础试剂盒 (Mabtech, VA, USA) 进行 IFNγ 和 IL4 ELISpot 检测。在 37℃ 下,在预包被抗体的 ELISpot 板中,用抗原刺激脾细胞和肺细胞,培养 16-18 小时。第二天,洗掉细胞,加入生物素化的检测抗体。洗板后,加入 1:30000 稀释的 Extravidi-ALP 偶联物,室温孵育 1 小时。洗板后,每孔添加 70µL 显色液,孵育 20-30min,形成斑点,然后用水清洗,干燥。使用 Cytation 7 (BioTek) 对斑点进行量化。每个点对应一个单独的细胞因子分泌细胞。检测结果如下:图 4 ELIPSOT 方法检测小鼠脾细胞和肺细胞分泌细胞因子的水平2、CTL 活性检测疫苗诱导的细胞毒性 T 淋巴细胞 (CTL) 可以直接杀伤肿瘤细胞,起到抗肿瘤的作用,因此可以通过检测 CTL 的杀伤效应来反应疫苗的效果。常用的检测细杀伤效应的方法有很多,下表列举了一些常用的方法。王晓东等人发表的文章中提到了 LDH 检测,检测方法如下:从接种疫苗小鼠的脾 脏中分离淋巴细胞(效应细胞)。EAC 肿瘤细胞(靶细胞)与淋巴细胞(效应细胞-靶细胞比例为 50:1)共培养 4h,使用乳酸脱氢 (LDH) 法测定细胞毒性。将培养 4h 后的培养上清加入在 ELISA 板中,室温下加入底物溶液,孵育 30min。最 后,加入终止液终止反应,并用酶标仪 (BioTek) 在 490nm 处检测光密度。检测结果如下:相对于 PBS 对照组来说,T7-MB 组 CTL 细胞具有显著的杀伤效应。图 5 LDH 法测定 CTL 介导的 EAC 靶细胞的裂解水平3、抗体滴度及亲和力检测肿瘤疫苗除了可以诱导细胞免疫之外,也可诱导体液免疫,对此可通过对抗体滴度及亲和力进行检测来反应疫苗抗肿瘤的效果,ELISA 是一种非常经典的检测方法。上述关于胃癌疫苗的文章中通过 ELISA 方法测定小鼠接种疫苗后血清中总 IgG 含量,具体检测过程如下:小鼠接种疫苗后收集血液样本,通过 3000g 离心 15 分钟获得血清样本。ELISA 板预先在 4℃ 包被 BSA-MG1 过夜,然后在室温下依次加载封闭溶液 2h,血清样品 (1:50 稀释) 和检测抗体 1h。最 后,在体系中加入 p-NPP 底物 (Millipore) 和终止液,用酶标仪 (BioTek) 在 405nm 处记录 OD 值。检测结果如下:相对于 PBS 对照组来说,T7-MB 组抗体含量明显上升。图6 ELISA法测定疫苗诱导的血清抗体水平除此之外,在 Emily C. Gale 等人发表的关于 mRNA 递送系统及辅剂研究的文章中,通过 ELISA 的方法测定了 mRNA OVA 模式疫苗诱导的 OVA 特异性抗体的绝 对含量及其亲和力。具体检测方法如下:抗体浓度:小鼠接种加强疫苗后,采集血液样品,血清按照 1:100 000 进行稀释。采用 anti-OVA mouse IgG1 ELISA (Cayman Chemicals) 试剂,按照试剂厂家的说明进行 ELISA 实验。使用 Synergy H1 Microplate Reader (BioTek) 在 450nm 处记录 OD 值。根据标准曲线计算血清抗体浓度,表示 mg/mL。抗体亲和性:将 12 个梯度稀释的血清与恒定浓度标记 HRP 的 anti-OVA 抗体 (3nM) 混合,并在 OVA 抗原包被的板中室温孵育 2 小时,洗板后用 TMB 底物孵育,用 HCl 停止反应。测定 450nm 处的 OD 值。根据业内发现的单克隆抗体的共同亲和力,假设对照抗体的 KD 为 1nM 对实验组的 KD 值进行统计。这一假设仅影响报告的绝 对 KD 值,而不影响实验组之间的相对差异。检测结果如下:pIC 为双链 RNA 结构模拟物,图E中比较了可溶性的 pIC 和不同纳米颗粒递送系统诱导的绝 对抗体含量,从图 E 中可以看出 2B 递送系统诱导的 OVA 特异性抗体含量最 高。从F和G可以看出 2B 递送系统相对于可溶性 pIC 来说诱导的 IgG 亲和力也显著升高。图 7 pIC/PBAE NPs 增强体液免疫4、ADCC 检测疫苗诱导体液免疫产生的抗体能够捕捉目标抗原,阻断这个靶分子的功能,也可以引导其他免疫细胞(如巨噬细胞和自然杀伤细胞)杀死表达抗原的靶细胞,在肿瘤治 疗中,特别是血液肿瘤中,抗体依赖的细胞介导的细胞毒性作用 (ADCC) 起着关键作用,ADCC 常用的检测方法包括细胞活力检测、LDH 检测、工程细胞株、Delfia、RTCA、细胞成像检测等。王晓东等人发表的关于胃癌疫苗研究的文章中,提到了 LDH 方法检测 ADCC,检测方法如下:小鼠接种疫苗后,采集其血清样本(1:25 稀释),然后与 EAC 细胞(靶细胞)在 37°C 孵育 30min。使用小鼠 NK 细胞分离试剂盒从正常 BALB/c 小鼠中分离出自然杀伤 (NK) 细胞(效应细胞),与抗体标记的 EAC 细胞以效靶比 50:1 共培养 4 小时。采用 LDH 法 (Promega) 测定细胞毒性,检测方法与之前提到的 CTL 活性检测的方法一致。检测结果如下:相对于 PBS 对照组来说,T7-MB 组产生的抗体具有显著的杀伤效应。图 8 LDH 法测定血清抗体介导的 EAC 靶细胞的裂解水平肿瘤疫苗生物学活性检测解决方案推荐本文介绍了肿瘤疫苗活性检测的常用方法,包括细胞因子检测、CTL 活性检测、抗体滴度及亲和力检测、ADCC 检测等方法,涉及到了酶标仪、成像系统、流式、RTCA、洗板分液系统等设备。Agilent 细胞分析事业部可以从多个角度为用户提供从样品处理,到结果检测再到数据分析的全面解决方案。
321人看过
2023-04-18 10:25:01低真空下的高效光催化二氧化碳还原反应
1. 文章信息标题:High-efficiency photoreduction of CO2 in a low vacuum中文标题: 低真空下的高效光催化二氧化碳还原反应页码:15389-15396DOI:10.1039/d2cp00269h               2. 期刊信息期刊名:Physical Chemistry Chemical PhysicsISSN:1463-90842021年影响因子:3.945分区信息: 二区TOP(升级版)涉及研究方向: 物理化学、化学物理、生物物理化学 3. 作者信息:作者是 Yuxin Liu (刘钰鑫) 。通讯作者为  Shuai Kang (康帅)、Zhuofeng Hu (胡卓锋)、Wenqiang Lu (陆文强)。4.实验仪器:CEL-SPH2N/PAEM文章简介:利用太阳光进行光催化反应制备绿色清洁能源是非常诱人的技术。加之,如今人们依赖化石能源给大气中排放了过多的CO2。将CO2在光的作用下转换成可燃烧的CO、CH4或者其他碳氢化合物是一个两全其美的方法。CO2是一个很稳定的分子,许多研究关注制备高效、稳定的光催化剂来提高CO2还原性能,这些研究主要通过扩展光响应范围、加快电荷输运、增加活性位点、选择性吸附CO2等。但是,光催化CO2反应目前面临的一个大问题是,不管用哪种催化剂,反应的产物还是太少,不能在现实中实施。然而,反应中CO2的实际用量很少,每克催化剂每小时大约只用毫摩尔级的CO2,但是绝大部分研究在大气压下纯二氧化碳中进行。我们认为,在合适的CO2含量中研究CO2还原反应是很有意义的。因此,我们用常规TiO2作为光催化剂,在低真空下研究了光催化CO2的反应效率。如下图1,实验表明低真空气氛有助于提高光催化CO2反应性能。在低浓度CO2(10%)中,低真空下反应的CH4产率提高了100倍,纯CO2中的CH4产率也提高了大约18倍。通过质谱检测,反应生成的CH4来源于CO2而不是杂质等的其他物质。图1(a)不同气压下CH4产率,(b)-80kPa和大气压下CH4产率对比.(c)用13CO2反应得到的13CH4的质谱谱线.催化反应的稳定性在实际实施中举足轻重,我们测试了在低真空下反应四个循环(图2a)和连续反应24小时(图2b)的情况,实验表明,CH4产率和选择性均稳定。24小时后,CH4产率在低真空下是3.4umol,在大气压下是0.9umol.我们用XPS分析了在不同气压下的催化反应过程(图2c-d)。低真空下,反应3.5小时,催化剂表面COH*饱和,一直持续到反应24小时(有CH4生成);而在大气压下,反应3.5小时的COH*很少量,反应24下时催化剂表面的COH*才逐渐饱和(如图2e)。图2 低真空下光催化CO2反应的稳定性测试.(a)循环测试,(b)连续测试.测试前后催化剂表面COOH*和CO*的(c)C1s变化情况和(d)定量分析,(e)COH*的演变图.我们分析了低真空下光催化CO2反应的机理。如图3a,TiO2吸收了光子产生电子,这些光电子一部分与CO2反应生成CO和CH4。检测到的光电流是电子-空穴再结合和表面吸附物质导致的电子湮灭这两者的竞争结果导致。在低气压下,后者被抑制,体现出增大的光电流(如图3b),这有助于CO2的还原反应。另外,大气中的气体分子由于布朗运动能促进CO从催化剂表面的脱附,不利于CH4的生成(如图3c)。大气中的气体分子也会占据催化剂表面的位点,导致CO-不易与-H结合,阻碍CH4的生成(如图3d)。图3低真空下光催化CO2反应的机理分析.(a)TiO2的能带结构,(b)不同气压下的光电流对比,(c)布朗运动对反应的影响,(d)活性位点抑制.为了验证低真空下光催化CO2反应性能提高,我们用Pt-TiO2催化剂研究了光催化CO2反应,结果如图4。低真空下,CH4产率是1.47umol,选择性是94.71%;而大气压下,CH4产率是0.83umol,选择性是81.14%。图4低真空下光催化CO2反应的验证.(a)Pt-TiO2的CH4产率,(b)不同Pt含量的CH4产率对比.总之,研究表明气压对光催化CO2还原反应有很大的影响,低真空下光催化CO2反应性能有所提高。不论在纯CO2中还是在低浓度CO2(10%)中,这个结论依然成立。性能增强主要来源于低真空下光电子能更好的聚集、布朗运动较弱、有更多的活性位点。我们认为这种从工程学角度来提高光催化CO2的反应效率是有效且普适的策略,能为光电催化CO2还原反应和其他反应提供有价值的参考。
233人看过
标准必要专利饭垄断指引
慕尼黑展会
医疗器械更新机遇
高精度温度传感器
机载高光谱成像系统
LA-950 激光粒度分析仪
光催化活性评价系统
超声波风速风向传感器
手持研磨仪
脉冲信号参数测试仪
葡萄糖检测仪
阿特拉斯空压机
数字式涂层测厚仪fn
电子计数天平
安捷伦6651A
荷兰热电石英裂解管
光催化系统
恒温水浴5L
木糖赖氨酸脱氧胆盐琼脂
菲尼克斯阀门
尼康厚度计
三维风速风向仪
nabertherm吉林代理
高性能超速离心机
安捷伦ICP炬管
浊度计标准液
朝天放线滑车
旋转粘度计测定
成鞋刚性试验机
梯度基因扩增仪
固定式臭氧检测仪
滤水器 五层过滤 含义
石墨消解器
畜牧地磅秤
高精度温度传感器
畜牧地磅称
手持式研磨仪
葡萄糖检测
里氏硬度计图片
超高频超声探头
Echo MRI
机载高光谱成像系统
精密酸度计 phs 3c