2025-01-10 10:50:43一体式水深水温仪
一体式水深水温仪是一种集成了水深测量和水温监测功能的专用仪器。它采用高精度传感器,能够实时、准确地测量并显示水体的深度和温度信息。该仪器结构紧凑、操作简便,适用于各种水域环境的监测和测量工作。一体式水深水温仪广泛应用于海洋、湖泊、河流等水域的科研考察、环境监测、水上运动等领域,为用户提供可靠的水文数据支持,是水文、气象、环保等部门不可或缺的工具。

资源:11496个    浏览:18展开

一体式水深水温仪相关内容

产品名称

所在地

价格

供应商

咨询

云境天合 一体式水深水温仪 TH-CSW150
国内 山东
¥2180
山东天合环境科技有限公司

售全国

我要询价 联系方式
微型水温仪
国外 美洲
面议
青岛领海海洋仪器有限公司

售全国

我要询价 联系方式
程序降温仪Thermo Scientific ™ CryoMed™ 系列程控降温仪
国外 美洲
面议
赛默飞世尔科技实验室产品

售全国

我要询价 联系方式
云境天合 一体式水深水温测量仪 TH-CSW150
国内 山东
¥2180
山东天合环境科技有限公司

售全国

我要询价 联系方式
投入式测量水深,便携式水深仪
国内 江苏
¥2300
江苏通达仪表有限公司

售全国

我要询价 联系方式
2025-03-28 16:00:11验潮仪怎么计算水深
验潮仪怎么计算水深:揭秘水深测量的原理与方法 在水利、航海及海洋学等领域中,准确测量水深是非常关键的一项工作。验潮仪作为一种常见的水深测量工具,广泛应用于潮汐观测、海洋勘测等项目。本文将详细阐述验潮仪如何计算水深,以及其背后的原理和方法,帮助读者更好地理解这一重要设备的工作方式。通过对水深计算的深入解析,本文将展示验潮仪在实际应用中的重要性,并提供相关的技术细节,以期为从事相关工作的专业人员提供参考。 验潮仪的工作原理 验潮仪的核心功能是通过测量水位变化来计算水深。其工作原理基于声波反射的时间差或压力变化。具体来说,当验潮仪发出声波信号或记录水面压力变化时,设备会根据声波从仪器发出到返回所需的时间,或者通过测量水压的变化来推算水深。通过精确的时间计算和水压数据,验潮仪能够提供准确的水深信息。 声波法与压力法:两种常见的水深测量技术 验潮仪常用的水深测量方法主要有声波法和压力法两种。声波法通过向水底发射声波,并根据声波反射回来的时间差来计算水深。此方法的优势在于其高精度和快速响应,尤其适用于大范围的水域测量。压力法则通过测量水下压力变化来推算水深,其原理基于水的静压力随着水深的增加而增大。因此,验潮仪可以通过内置的压力传感器实时监测水压,从而计算出水深。 水深计算中的误差与校准 尽管验潮仪具有较高的测量精度,但在实际操作中仍可能存在一定的误差。常见的误差来源包括设备的安装偏差、环境因素(如温度、盐度)对测量结果的影响、以及仪器本身的精度限制。因此,验潮仪在使用前需要进行充分的校准,并定期检查其工作状态,以确保数据的准确性。 验潮仪的应用领域与前景 验潮仪在多个领域中都有广泛的应用,特别是在海洋研究、潮汐监测和水文勘探等方面。在潮汐监测中,验潮仪能够帮助研究人员实时跟踪潮位变化,为航行安全提供数据支持。在海洋勘探中,验潮仪则能够提供的水深数据,为海底地形的研究和资源开发提供科学依据。随着技术的进步,验潮仪的应用范围和精度还将不断提升。 结语 验潮仪在水深测量中的重要性不可忽视,通过声波法和压力法等技术,能够精确计算水深,为各类海洋及水文研究提供可靠的数据支持。在未来,随着科技的不断发展,验潮仪的测量精度和适用范围将进一步扩大,推动水利和海洋科学研究的进步。对于相关领域的专业人员而言,了解验潮仪的工作原理和应用方法,将有助于更好地利用这一重要工具进行水深测量。
4人看过
2023-05-09 09:29:50Ecodrone®一体式高光谱-激光雷达无人机遥感系统——森
在陆地生态系统中,森林是最 大的有机碳库,是陆地中重要的碳汇和碳源,因此了解森林生态系统在碳循环中的作用,对于研究陆气系统的碳循环乃至全 球碳循环都是一个基础,具有重要的意义。易科泰光谱成像与无人机遥感技术研究中心最 新推出Ecodrone®一体式高光谱-激光雷达无人机遥感系统,助力森林碳循环研究及应用。性能特点:8旋翼专业无人机遥感平台,搭载VNIR/NIR高光谱成像、机载PC及激光雷达可飞行作业20分钟以上,有效覆盖面积超10ha厘米级地面分辨率,50m高度高光谱成像地面分辨率达3.5cm,30m高度(用于高分辨率林木表型分析)地面分辨率可达2cm50m高单样线飞行作业可自动采集形成宽度36m的样带高光谱成像大数据高密度三维点云,精确度2.5cm,最 高可达3次回波,50m飞行高度点云密度700pts/m2专业无人机遥感技术方案,同步获取高光谱与激光雷达数据,应用软件可直接得出近百种植被光谱反射指数、高密度三维点云、三维测量数据、分类点云、DTM等应用于大范围、多维度的森林遥感研究、碳循环研究、林木三维表型测量、植被资源调查、森林物种多样性研究、植被生物及非生物胁迫分析、环境及生态系统动态变化研究等案例一:森林碳库分布研究森林地上生物量(AGB)的估算对于碳循环建模和气候变化缓解方案的制定至关重要。来自意大利、美国和英国的研究人员将主动和被动传感器结合,其中被动型高光谱数据记录了潜在与森林生物量相关的冠层光谱信息,并将这些信息与主动型小型激光雷达获取的参数相结合,实现了在不同尺度上对森林生态系统的有机碳分布进行遥感计算。       研究区域位于塞拉利昂的戈拉雨林国家公园 (GRNP) 内,处于西非潮湿的上几内亚森林带的最西端,该地区的森林主要为湿润低地常绿林,部分地区主要为干燥低地常绿和半落叶林类型。图1.1 位于塞拉利昂和利比里亚之间的研究区域研究人员采用偏最 小二乘回归(PLSR)处理多输入和多重共线性问题,计算投影中的重要性变量(VIP),以评价各预测因子对生物量的重要性。结果表明,当单独使用高光谱波段时,其预测能力有限(R2 =0.36),用植被指数替代高光谱波段的改善较小(R2 =0.67),仅基于激光雷达指标,PLS预测AGB的决定系数(R2)为0.64,当再将高光谱波段添加到激光雷达度量中,精度得到了适度的提高(R2 =0.70)。图1.2 (左)不同输入的预测与现场观测AGB的散点图:(A)激光雷达指标,(B)高光谱波段,(C)激光雷达指标和 VI,(D)激光雷达指标和高光谱波段;(右)7个高度等级,每个等级间隔10m的70个样地(总面积= 87500m2)范围的AGB和树木数量森林是碳的主要吸收者,它所固定的碳相当于其他植被类型的2倍,本研究中提出的高光谱和激光雷达数据融合相关的发现非常具有意义,有助于扩大该系统数据融合适用性的研究,进而对全 球气候变化研究做出更重要的贡献。案例二:森林碳汇定量评估比较森林地上生物量生物量是影响气候变化和森林生产力的重要因素,因此评估森林对碳汇和碳循环的贡献程度具有重要的意义。韩国科研人员借助高精度激光雷达数据、数字航空摄影测量图像、高光谱图像等空间信息,对森林碳汇信息进行定量评估。研究区位于韩国庆尚南道巨济市,该区域森林密度相对较低,树种多样,森林资源丰富,选取研究区内2km*2km的区域进行数据采集。基于高光谱数据中每个树种的光谱信息,使用马氏距离法对树种进行精确分类,基于高密度的LiDAR数据提取森林资源。图2.1 从左至右依次为:研究区;激光雷达数据;高光谱图像图2.2 (左)树种分类结果;(右)利用高密度激光雷达数据提取地理和森林资源的结果将激光雷达与数字航拍图像、高光谱图像相结合计算了混交林、针叶林和阔叶林的碳汇,同时通过对森林资源的树种和年龄信息进行量化,借助激光雷达和数字图像信息对树种、年份、区域的碳汇进行计算。利用激光雷达信息和图像分析的基础数据库,对选定的区域、行政区、年份进行森林信息和碳汇评估分析,实现了精确地碳汇信息提取,结果如2.3/2.4所示。图2.3 多传感器结合的混交林、针叶林和阔叶林的碳汇估算结果图2.4 基于激光雷达和图像信息的森林信息和碳汇评估,从左至右:第 一行(激光雷达数据;DSM;DEM;树高信息);第二行(树种信息图;增长量分析图;碳吸收分布图;土地覆盖图)易科泰生态技术公司致力于生态-农业-健康研究发展与创新应用,为碳源碳汇定量评估、植被资源调查、生态环境监测、森林遥感研究、林木表型分析、林业测绘等领域提供一体化多传感器立体遥感技术方案。参考文献:[1] Laurin G V, Chen Q, Lindsell J A, et al. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89: 49-58.[2] Choi B G, Na Y W, Shin Y S. A Comparative Study of Carbon Absorption Measurement Using Hyperspectral Image and High Density LiDAR Data in Geojedo[J]. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 2017, 35(4): 231-240.
425人看过
2023-05-23 12:56:43限时买赠 | 赛默飞程控降温仪产品宠粉季火热来袭
101人看过
压电陶瓷及高分子材料
浮球液位开关
红外线水分含量检测仪
糕点水分测定仪
大肠菌群检测系统
管式土壤含水率监测站
多层土壤墒情监测站
安全网紫外线照射箱
瓦楞纸水分含量测试仪
一体式水深水温仪
智慧农业农业四情监测系统
锂电池水分测定仪
除油清洗设备
磁力搅拌器98-2
食品水分含量测试仪
塑料密度计
水质大肠杆菌检测仪
电池极片水分测试仪
泥浆固含量测试仪
大肠埃希氏菌检测仪
固形物快速测定仪
带脱气超声波清洗机
固体含量测试仪
肠埃希氏菌检测仪
浆料固含量测试仪
糖果水分测量仪
陶瓷浆料固含量测定仪
液体含固量测试仪
安全网紫外线预处理箱
调味品固形物测定仪
饲料水分测试仪
固体含量测定仪
密炼机维修
酶底物法水质检测仪
酶底物法程控定量封口机
纸张水分测定仪
ICP-OES维修
ICP-OES维护规程
管式土壤含水率监测站
ICP-OES应用前景
一体式水深水温仪
ICP-OES原理解析
icp-oes组成解析
三维共聚焦白光干涉仪
icp-oes维护保养规程
可编程衰减器
磁力搅拌器98-2
ICP-OES功能作用
ICP-OES怎么改名
光学显微镜金相学应用
水冷螺杆式低温机组
ICP-OES注意事项
ICP-OES仪器构造解析
USB 功率传感器
Sensofar S neox
PE ICP-OES维修服务
集热式恒温磁力搅拌器
三层管式土壤墒情监测站