- 2025-01-21 09:32:41三氯 乙酸
- 三氯乙酸,化学式为CCl₃COOH,是一种有机化合物,有强烈刺激性气味,易溶于水、乙醇、乙醚。它是重要的有机合成原料和试剂,可用于农药、医药、染料等的制造,还可用作油脂、树脂、橡胶的溶剂和蛋白质的沉淀剂,也可用作有机合成中的氯化剂及催化剂。同时,三氯乙酸也是一种常用的蛋白质变性剂,能破坏蛋白质中的氢键和疏水键,使蛋白质沉淀。此外,它还是一种强酸,具有腐蚀性,使用时需小心。
资源:11720个 浏览:114次展开
三氯 乙酸相关内容
三氯 乙酸资讯
-
- 水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法
- 本标准规定了测定地表水、地下水、生活污水和工业废水中氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的离子色谱法。
三氯 乙酸产品
产品名称
所在地
价格
供应商
咨询

- 绿草定(三氯吡氧乙酸)
- 国内 上海
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式

- 乙酸α-(三氯甲基)苯甲酯,≥ 98.0%
- 国外 欧洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式

- 乙酸α-(三氯甲基)苯甲酯,≥ 98.0%
- 国外 欧洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式

- 氯碘乙酸
- 国外 美洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式
三氯 乙酸问答
- 2025-04-25 14:45:14三厢高低温冲击试验箱怎么安装
- 三厢高低温冲击试验箱作为一种重要的环境测试设备,广泛应用于电子产品、汽车、航空航天等领域,旨在模拟不同温度环境下的使用条件,以评估产品在极端温度变化下的性能。正确安装三厢高低温冲击试验箱是确保其有效运行和准确测试结果的关键步骤。本文将详细介绍三厢高低温冲击试验箱的安装流程,包括设备的选择、位置确定、连接设置等多个方面,帮助相关工程技术人员顺利完成安装工作,确保设备的高效使用与长期稳定性。 1. 安装前的准备工作 在进行三厢高低温冲击试验箱的安装前,需要对安装场地进行充分的评估。选择一个通风良好、温度适宜且湿度控制稳定的环境。安装位置应避免直射阳光及远离热源或振动源,以免影响试验箱的稳定性和准确性。确保地面平整坚固,以支撑试验箱的重量,避免设备因地面不平而出现倾斜或损坏。 2. 确定电源和气源 三厢高低温冲击试验箱的正常运行需要稳定的电源和气源支持。确保试验箱所需的电压与当前电力供应相匹配,一般试验箱的电源为380V或220V的交流电,需根据设备规格进行选择。接着,检查电源接入的线路和插头是否符合国家电气标准,确保安全使用。 部分三厢高低温冲击试验箱需要气源支持,如压缩空气。因此,气源的安装和维护也不可忽视。气源管道应保持清洁干燥,避免空气中的水分和油分影响试验箱的正常运行。 3. 设备的搬运与定位 在确保场地准备就绪后,便可开始搬运设备。三厢高低温冲击试验箱通常体积较大,重量较重,因此搬运时需要使用专业的起重工具或设备,避免人工搬运时造成损伤。搬运过程中应小心轻放,防止撞击和震动对设备造成损害。 定位时,应根据设备的设计要求和厂房空间来选择佳位置,确保操作人员能够方便地进行操作和维护,同时保持设备周围适当的空隙,以利于空气流通和散热。 4. 安装连接与调试 在试验箱摆放好之后,下一步是进行设备的连接和调试。按照设备的电气接线图连接电源线和气源管道,确保各项连接牢固、安全。然后,进行设备的首次调试,检查温控系统、冷却系统以及加热系统等是否正常运行。 调试过程中,注意观察温度和湿度的变化,确保其达到设定的测试条件,且设备能够快速响应并稳定工作。如有异常,应立即检查并调整设备的各项参数,排除可能的故障。 5. 定期维护与注意事项 在设备成功安装并投入使用后,定期的维护和检查至关重要。设备的长期稳定运行离不开良好的保养和管理。定期检查电气线路、气源设备和温控系统的运行状态,及时清理设备内部的灰尘与杂物,确保其无障碍运行。 三厢高低温冲击试验箱的安装是一个系统性工程,涉及多个方面的准备工作和细致的调试步骤。通过正确的安装和操作,可以确保试验箱在各类高低温冲击测试中的稳定性和精确性,从而为相关产品的质量评估提供可靠的数据支持。
109人看过
- 2023-02-27 15:34:41食品中氯丙醇、氯丙醇酯和缩水甘油酯的相关知识介绍
- 氯丙醇、氯丙醇酯和缩水甘油酯是近些年国内外备受关注的食品加工过程中产生的污染物,3-MCPD可损害肾脏和生殖系统等,国际癌症研究机构(International Agency for Research on Cancer,IARC)将游离态3-MCPD列入2B类致癌物清单,将游离态缩水甘油列入2A类致癌物清单。三类物质即相似又有不同,今天小编为大家系统性地梳理下氯丙醇、氯丙醇酯和缩水甘油酯的分子结构、食品中的形成原理和检测原理等相关知识。01 氯丙醇、氯丙醇酯和缩水甘油酯类化合物简介氯丙醇氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP)。其中3-MCPD的污染量最 大,常被作为氯丙醇类物质的检测参照物,反映食品加工中氯丙醇类物质的污染状况。四种化合物的详细信息见下表。氯丙醇酯氯丙醇酯类化合物是氯丙醇类化合物与脂肪酸(棕榈酸、油酸、硬脂酸等)的酯化产物。包括3-氯-1,2丙二醇酯(3-MCPDE)、2-氯-1,3-丙二醇酯(2-MCPDE)、1,3-二氯-2-丙醇酯(1,3-DCPE)和2,3-二氯-1-丙醇酯(2,3-DCPE)。其中食品污染风险较高的主要是3-氯丙醇酯(3-MCPDE)和2-氯-1,3-丙二醇酯(2-MCPDE)。缩水甘油酯缩水甘油酯类化合物是甘油中1,2位羟基脱水缩合形成环氧基而另一个羟基与脂肪酸发生酯化反应所生成的酯化产物,是一类末端环氧酯,可代谢生产缩水甘油和脂肪酸,在一定条件下可转变为3-MCPD。02 食品中氯丙醇、氯丙醇酯和缩水甘油酯的形成原理氯丙醇人们目前较为关注调味品中的氯丙醇类化合物3-MCPD,其主要来源是植物性蛋白在盐酸催化及高温条件下水解后的产物。传统的酸水解植物蛋白(HVP)生产工艺是将植物蛋白质用浓盐酸在高温下回流酸解,而在这一过程中,为了提高氨基酸得率,会加入过量的盐酸。在此过程中,其原料(如豆粕等)的脂肪和油脂会水解成丙三醇,并进一步与盐酸反应生成氯丙醇。酸水解植物蛋白常作为风味增强剂被加到配制酱油等调味品中,从而增加了调味品中3-MCPD的含量。《GB 2762-2022 食品安全国家标准 食品中污染物限量》对调味品中3-MCPD的限值做出了明确规定,详见下图。氯丙醇酯和缩水甘油酯氯丙醇酯、缩水甘油酯在精炼植物油、油炸食品(油条、方便面、麻花)、膨化食品(炸薯条)、烘焙食品(面包、蛋糕、饼干)、婴儿幼儿配方奶粉、熏制烧烤食品中广泛存在,精炼油脂是污染的主要来源之一。氯丙醇酯通常容易在油脂精炼及油脂食品热加工过程中形成,油脂中氯的来源比较广泛,包括底物原料、使用的辅料(水、酸、脱色剂等)、含氯的包装材料及加工工艺带入等,这些氯化物在炼制植物油过程中进入油脂,高温加工条件下可以与甘油单酯、甘油二酯或甘油三酯反应,最 终形成氯丙醇酯和缩水甘油酯。精炼油中3-MCPDE多数是在脱臭过程中形成,最 关键的影响因素就是脱臭温度和脱臭时间,温度升高和时间延长都会增加3-MCPDE的产生量。缩水甘油酯也是食用油脂精炼过程中产生的一种副产物,在油脂精炼过程中,缩水甘油酯通常会伴随3-氯丙醇酯一起形成,3-氯丙醇酯含量高,缩水甘油酯含量也高。欧盟在COMMISSION REGULATION (EU) 2018/290 法规中规定了缩水甘油酯的限值,详见下图。03 食品中氯丙醇、氯丙醇酯和缩水甘油酯的检测原理目前国内检测食品中氯丙醇、氯丙醇酯和缩水甘油酯的标准方法主要有《GB 5009.191-2016 食品安全国家标准 食品中氯丙醇及其脂肪酸酯含量的测定》、《SN/T 5220-2019 出口食品中 3- 氯丙醇酯及缩水甘油酯的测定 气相色谱-质谱法》和《国家食品污染和有害因素风险监测工作手册》。氯丙醇类化合物的检测需要进行衍生,然后使用气相色谱-质谱仪进行检测,而氯丙醇酯和缩水甘油酯的检测则需要先将酯类化合物水解为氯丙醇和缩水甘油,然后衍生后进行检测。GB 5009.191已于2022年发布了最 新修订版的征求意见稿,接下来就简单介绍下新版征求意见稿中氯丙醇、氯丙醇酯和缩水甘油酯的检测原理。氯丙醇检测原理征求意见稿中第 一篇规定了食品中4种氯丙醇(3-MCPD、2-MCPD、1,2-DCP、1,3-DCP)的检测方法,试样以氯化钠溶液提取,采用硅藻土小柱净化,经正己烷淋洗后,用乙酸乙酯洗脱氯丙醇,经七氟丁酰基咪唑衍生,以气相色谱-质谱仪测定,氘代同位素内标法定量。氯丙醇酯和缩水甘油酯检测原理征求意见稿中第二篇规定了食品中氯丙醇酯和缩水甘油酯的检测。氯丙醇酯和缩水甘油酯的检测需要对油脂样品进行水解,在样品水解过程中3-MCPD在碱性条件下有可能转变为缩水甘油,从而影响3-氯丙醇酯和缩水甘油酯含量的准确计算,需要进行含量校正;在酸性条件下水解,虽然3-MCPD不会转换为缩水甘油,但水解时间较长,需要过夜水解。征求意见稿中给出了3种不同的前处理方法进行氯丙醇酯和缩水甘油酯的检测,第 一法是碱水解方法,使用13C同位素内标标记,通过转换率对缩水甘油进行校正,得到试样中缩水甘油酯真实的含量;第二法是酸水解方法,酯键断裂反应需要水解16h;第三法也是碱水解方法,同一试样需要测试2次,通过酸性溴化钠和酸性氯化钠两种不同溶液进行中和,通过两种反应条件下3-MCPD含量的差值对缩水甘油进行校正,得到试样中缩水甘油酯的真实含量。第 一法的检测原理和化学反应式见下图:第二法的检测原理见下图:第三法的检测原理和化学反应式见下图:检测过程注意点在征求意见稿“第 一篇 食品中氯丙醇含量的检测”中,4种氯丙醇的检测使用七氟丁酰基咪唑进行衍生,和“GB 5009.191-2016”一样;而在“第二篇 食品中氯丙醇酯和缩水甘油酯的检测”中,第 一法和第三法的衍生试剂均选择了苯基硼酸溶液,而不是七氟丁酰基咪唑。这是因为第二篇的氯丙醇酯只检测3-MCPDE和2-MCPDE,而不检测单酯,苯基硼酸可以对3-MCPD和2-MCPD进行衍生,而不会和1,3-DCP和1,2-DCP发生衍生反应,因此苯基硼酸溶液可以用在3-MCPDE、2-MCPDE以及缩水甘油酯的检测实验中,而不可以在4种氯丙醇的检测中使用。
413人看过
- 2023-04-14 09:50:30SmartSolo® |新一代三通道智能监测单元
- SMARTSOLO-外型低调却实力不凡SmartSoloIMU-3CSmartSolo系列产品亮相为何IMU-3C会备受关注?IMU-3C有哪些功能?现在开始,见证实力IMU-3C-新一代三通道智能监测单元可进行三通道数据采集支持外接各类检波器可兼容多种类型传感器,各类传感器关联采集能够满足复杂多样的监测需求IP67防水等级水田、冰川等环境下使用防水性良好,无故障保障正常工作状态广泛的应用场景适用于不同行业的多样化项目需求将继续探索新行业和市场机会堤坝检测,孤石岩溶探测,采空区探测,地质调查建筑结构健康监测等长效采集省力省心低功率工作模式下,可连续采集30天连接外部大容量电池包及太阳能供电系统实现长时间数据采集高质量的项目成果拥有自主研发的软件系统支持微动数据实时频散
287人看过
- 2023-04-14 09:40:37SmartSolo® |新一代三通道智能监测单元
242人看过
- 2023-05-25 17:26:52【氯化新工艺】解决醇氯代反应中溶剂和腐蚀问题
- 研究背景工艺强化是连续制造的一个重要方面,其目标是减少设备尺寸、成本、能耗、溶剂和废物产生。微反应器技术是工艺强化的一个重要手段,旨在通过工艺强化实施连续加工,并最 终提供可持续的原料药规模化生产。氯化物是原料药合成中的良好中间体,但由醇合成氯化物需要高毒性和废物密集型氯化剂,如亚硫酰氯、磷酰氯、新戊酰基氯化物、Vilsmeier试剂、甲苯磺酰氯、2,4,6-三氯-[1,3,5]三嗪、DMF、草酰氯和光 气等。通常氯化剂以化学计量或过量使用,会导致大量有毒、有害废物的产生。图1. 由氯化物产生的衍生物理想的工艺是通过氯化氢(HCl)将醇转化为氯化物,这将最 大限度地减少废物的产生。但这一过程需要解决氯化氢的腐蚀问题。图2. 氯化氢(HCl)将醇转化为氯化物为了解决氯化氢(HCl)在工艺过程中腐蚀问题,荷兰Technische Universiteit Eindhoven的研究者将操作平台分为干区和湿区来处理腐蚀性氯化氢。微反应器为气液反应提供了一个很好的平台,它具有高的比表面积,从而获得高的传热和传质速率。此外,由于微反应器的持液体积小,在进行连续反应时只需要对持液体积加压,其本质安全的特性允许对广泛的工艺条件进行工艺强化研究。一、氯化氢输送装置纯态氯化氢对不锈钢和哈氏合金无害,然而当水分量上升到10ppm以上时,就会发生严重的腐蚀。因此,需要绝 对干燥的条件来防止设备的腐蚀。作者将实验装置分为干区和湿区,干区作为氯化氢气体输送装置,湿区作为反应装置,避免了腐蚀。图3. 氯化氢输送装置为了防止湿气进入装置,所有接头均为世伟洛克VCR型,管道使用了¼” 尺寸的不锈钢管道。一个氮气瓶压力设置为40Bar,用于系统的启动和关闭。另外两个氮气钢瓶压力设置为15Bar,用于实验时对系统进行持续吹扫,以防止水分扩散到质量流量控制器中。并且在输送装置的最 后一个阀门之后添加了一个内径为250μm的2m长的不锈钢尾管 。为了加强水分子从管道表面的解吸,作者安装了一条真空管线。在开始操作和拆卸装置之前,采用了循环真空吹扫程序。二、氯脱羟基装置常压下,液体醇用图4中的氯脱羟基装置HPLC泵进行泵送。气液段塞流在Y-混合器中启动,并继续进入ETFE反应器。图4. 氯脱羟基装置微反应器由内径为762μm的ETFE管道制成。当使用内径为1mm的管道代替时,由于壁厚较薄,在操作时观察到气体逸出到了加热介质中。在进入背压调节器(BPR,最 高可达16 bar)之前,让热产物流过30cm长的管道来进行冷却。三、实验结果和讨论理论上,气体在液体中的溶解度随压力增加而增加,随温度降低而降低。此外,在整个反应器中,气体会随着反应的进行而被消耗。随着温度的升高,由于气体的大量膨胀和快速的消耗,气体膨胀的程度和停留时间很难量化。因此,反应成功的唯 一衡量标准是基于合成氯化物的产量,而停留时间是根据流动状态进行估计的。图5. 氯化氢气体在1-丁醇和苯甲醇中的溶解度图6. 气体和液体混合点到Y混合器的距离使用气体的目标之一是最 大限度地减少过量使用HCl。作者之前用3当量盐酸进行的研究中,在120°C下停留15分钟,获得了99%以上的苄基氯产率;将HCl气体的当量降低到1,相同的停留时间下,在60℃时为80wt%,在100℃时为89wt%;由于气体的显著膨胀,导致停留时间显著缩短,因此没有对更高的温度进行研究;二苄基醚是唯 一副产物,其在60℃时的含量为3wt%,100℃时的含量为5wt%。3.1 氯化氢过量对产物的影响为了观察苄基醚的形成是否可以最 小化,同时最 大限度地提高苄基氯的产量,作者研究了氯化氢过量对产物的影响。当量逐渐从1.0增加到2.0,100°C时副产物的形成没有变化。然后在1.1和1. 5当量下筛选不同的反应温度。表1. 不同温度和氯化氢当量对苄基氯和二苄基醚的影响表1中的结果表明,选择性不会随着氯化氢当量的增加而提高。当量增加时,反应器中的气体滞留量增加,这导致了停留时间略有减少。3.2 压力对反应物、产物和副产物重量分布的影响随着压力从5Bar增加到16Bar,氯化苄的产量从79wt%增加到93wt%,而副产物的形成保持不变(3-4wt%)。因此表明,较高浓度的氯化氢增加了转化率,但对选择性没有影响。图7. 压力对氯化苄(红色)和苯甲醇(蓝色)和二苄基醚(绿色)重量分布的影响工艺参数优化的最 佳条件为:100°C、1.2当量氯化氢、20分钟停留时间和背压10 Bar,此条件下原料完全转化并获得96wt%的苄基氯。3.3底物拓展范围将苄醇的优化条件应用于一系列脂肪醇和苄醇。实验显示在苄基氯的最 佳条件下,即100°C、10 bar背压和1.2当量的氯化氢。图8. 底物拓展实验当使用脂族醇时,观察到气体溶解度有显著降低,这导致在Y混合器和BPR出口处都出现大的气塞。气塞的增加使得停留时间大幅降低至5分钟以内。增加反应器的持液体积至10ml,控制停留时间在15-20分钟的范围内。研究结论本文介绍了一种仅使用氯化氢气体的无溶剂连续工艺的开发,通过使用氯化氢气体代替有毒氯化剂,用于醇连续合成氯化物;将操作平台分为干区和湿区,用于处理腐蚀性氯化氢。干区用于输送气体和防止腐蚀,而湿区用于进行化学转化;使用氯化氢气体代替盐酸使得氯化氢当量从3减少到1.2。在20分钟的停留时间内,苄醇完全转化,并生成96wt%的苄基氯;该连续工艺不使用溶剂,并且仅生成唯 一的副产物水。此工艺是一种典型的绿色工艺,且具有一定的底物拓展性。
398人看过


