2025-10-03 16:31:57智能高内涵成像分析系统
智能高内涵成像分析系统是一种集成了高精度成像与先进数据分析技术的仪器。该系统能够对细胞、组织等样本进行多通道、高分辨率成像,并通过智能算法对图像进行快速、准确的分析。它可用于药物筛选、细胞生物学研究、疾病模型建立等领域,帮助科研人员深入了解样本的微观特征及其变化。系统具备自动化、高通量的特点,能显著提高实验效率和数据质量,是现代生物医学研究中不可或缺的重要工具。

资源:20007个    浏览:31展开

智能高内涵成像分析系统相关内容

产品名称

所在地

价格

供应商

咨询

美谷分子 ImageXpress HCS.ai 智能高内涵成像分析系统
国外 美洲
面议
美谷分子仪器(上海)有限公司

售全国

我要询价 联系方式
美谷分子 lmageXpress HCS.ai智能高内涵成像分析系统
国外 美洲
面议
美谷分子仪器(上海)有限公司

售全国

我要询价 联系方式
CellVoyager CQ1 高内涵成像分析系统
国外 亚洲
面议
横河电机(中国)有限公司

售全国

我要询价 联系方式
ImageXpress Micro 4 高内涵成像分析系统
国外 美洲
面议
美谷分子仪器(上海)有限公司

售全国

我要询价 联系方式
ImageXpress Micro Confocal 共聚焦高内涵成像分析系统
国外 美洲
面议
美谷分子仪器(上海)有限公司

售全国

我要询价 联系方式
2023-05-26 10:03:56PhenoTron®-XYZ植物表型成像分析系统
PhenoTron®-XYZ植物表型成像分析系统,是易科泰生态技术公司基于国际先进光谱成像传感器技术和自主研发的XYZ植物表型自动扫描平台,设计生产的一款适用于实验室或温室高通量植物表型分析系统:国际知名高光谱成像技术公司Specim(芬兰)高光谱成像传感器Thermo-RGB©红外热成像与可见光成像融合分析技术,可实现遥控和在线图传FluorCam叶绿素荧光成像技术平台采用STP(Sensor-To-Plant)技术和在线视觉监控可选配基于蒸渗仪技术的iPOT数字化培养盆,全面监测重量变化、土壤水分与温度,及叶片温度、叶绿素荧光、茎流、光合作用等生理生态参数可选配台面式表型分析平台,XYZ安装在样品平台上,特别适合实验室组培苗和种苗表型分析、种质资源检测等应用于种苗与组培苗表型检测、作物表型研究分析、植物生理生态研究、光合生理研究、种质资源检测、胁迫与抗性评估与筛选等 自左至右依次为:PhenoTron®-XYZ植物表型成像分析系统(可移动)、台面式PhenoTron®-XYZ植物表型成像分析系统、绿豆种苗高光谱成像分析(PRI)主要技术指标:1)平台采用STP技术,嵌入式主控系统,全中文操作界面,触控屏+PC端GUI软件双重控制,可无线控制2)XYZ三轴全自动运行,精 准定位扫描成像分析,运行精度1mm3)支持组合命令,可自定义Protocols,自动执行XYZ三轴移动、停止、光源开闭、快门触发等4)支持位置记忆,可一键注册、记录、保存、读取XYZ坐标信息,自动移动精 准定位采集Thermo-RGB及FluorCam叶绿素荧光成像数据5)机器视觉监控:监控镜头经过算法校准,在线监视全域植物状态和自动扫描成像,通过注册XYZ自动定位采集RGB、红外热成像、FluorCam叶绿素荧光成像数据,并在线监控全过程6)标配台面式XYZ三轴有效行程:X轴80cm,Y轴有效扫描长度180cm,Z轴可升降范围30cm7)400-1000nm高光谱成像:a)光谱通道448,具备MROI功能,根据需求自由选择感兴趣光谱波段,减少数据冗余b)帧率:330FPS(满帧),适应多种测量场景,尤其对容易摆动的植物,保证最 佳的成像效果c)光谱分辨率 FWHM:5.5nmd)空间分辨率:1024像素e)信噪比400:1f)分析参数:可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、叶绿素荧光指数、健康指数、覆盖度等近百种参数8)900-1700nm高光谱成像:a)光谱通道224,具备MROI功能,根据需求自由选择感兴趣光谱波段,减少数据冗余b)帧率:670FPS(满帧)c)光谱分辨率 FWHM:8nmd)空间分辨率:640像素e)信噪比1000:1f)分析参数:可成像测量分析NDNI归一化N指数、NDWI归一化水指数、MSI水分胁迫指数等9)SpectrAPP®高光谱成像分析软件:a)具备伪彩色/灰度显示、波段融合、ROI选区、光谱指数分析、光谱曲线绘制、光谱特征统计、直方图统计、结果图/表导出等功能b)可分析NDVI、PRI、DCNI、CRI、ARI、PSRI、NPQI、EVI、HI、WBI等数十种光谱指数,可根据需求定制添加光谱指数  左:SpectrAPP®高光谱成像分析,右:绿豆幼苗叶绿素荧光成像分析10)Thermo-RGB成像:a)可见光-红外热成像双镜头主机,出厂黑体多点校准并附校准证书,分辨率640×512像素b)测量温度范围-25℃-150℃,灵敏度0.03℃@30℃,c)红外热成像分析软件具备调色板、差值技术、温度范围设置、等温线模式、选区分析、温度扫描、剖面温度、时间图、3D温度图、在线报告等功能d)Thermo-RGB©成像融合分析:可进行手动/自动ROI分析;光照/背光叶片长度、宽度、周长、凸包面积、圆度等形态分析;最 高、最 低、平均温度、最 大温差、中位数等温度分析;R/G/B、H/S/V、绿视率等颜色分析,具备温度直方图统计、路劲分析、温度转换、图/表导出等功能e) Thermo-RGB遥控并可在线图像无线传输,实时监测RGB及红外热成像画面,测量最 大、最 小、中心点温度信息等11)叶绿素荧光成像:a)专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720×560像素,像素大小8.6×8.3µmb)3色4组LED激发光源:620nm脉冲调制测量光,620nm红色、5700K白色双色光化学光源,735nm远红光用于测量Fo’等c)光化学光最 大1000µmol.m-2. s-1可调,饱和脉冲3900µmol.m-2. s-1d)可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocolse)50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图f) 自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图g) 可通过注册定位自动精 准定位运行叶绿素荧光成像分析,单次成像面积35x46mmh)可对植物叶片、果实等不同组织进行叶绿素荧光成像分析i) 可选配GFP成像j) 配备便携支架和叶夹,方便独立使用
254人看过
2023-05-23 12:34:04【会议预告】诚邀您参加上海站高内涵成像技术与应用研讨会
尊敬的老师:您好!我们诚挚地邀请您参加 5 月 26 日在上海举办的高内涵成像技术与应用研讨会。本次应用研讨会旨在与科学家面对面的交流,分享使用高内涵成像和分析技术的经验,期望为相关研究领域提供有用的信息,拓展思路。高内涵成像分析系统是一种集高分辨率、自动化、智能化、高通量于一体的通用检测技术平台,其为细胞水平的研究分析提供了高效的解决方案,是创新药物研究、中药药效、肿瘤研究、神经生物学、免疫学、干细胞研究等领域的重要研究工具。此次会议我们邀请企业、科研等专家学者共聚一堂,带来 ImageXpress 高内涵成像分析系统在各研究领域最 新进展和应用。我们期待您的参与,并再次感谢您的关注和支持!美谷分子仪器(上海)有限公司时间2023 年 5 月 26 日地点:上海浦东由由喜来登大酒店(上海市浦东新区浦建路 38 号)推荐到达方式:地铁 4 号线塘桥站 3 号口右转 20 米报名方式:扫一扫二维码  即可报名参会扫一扫二维码  即可报名参会
159人看过
2025-02-18 14:30:11细胞成像检测系统如何操作?
细胞成像检测系统:革新生命科学研究的关键工具 细胞成像检测系统是生命科学领域中的一项重要技术,它广泛应用于细胞生物学、医学研究以及药物开发等多个领域。随着技术的不断进步,细胞成像检测系统的功能和精度也在不断提升,使研究人员能够更深入地观察细胞内部的动态变化、结构特征以及各种生物学过程。这些系统不仅帮助科学家更好地理解细胞行为,还为疾病的早期诊断和方案的制定提供了强有力的支持。本文将详细介绍细胞成像检测系统的工作原理、应用领域及其对生命科学研究的重要意义。 细胞成像检测系统的工作原理 细胞成像检测系统通过使用显微技术,结合先进的成像设备,能够捕捉到细胞内部和表面的细节。常见的技术包括荧光显微镜、共聚焦显微镜和电子显微镜等。荧光成像技术利用荧光染料标记细胞中的特定分子或结构,能够清晰地显示细胞的各种动态过程,如蛋白质的表达、细胞的增殖与死亡等。共聚焦显微镜则通过激光扫描技术获得高分辨率的细胞图像,能够在更高的放大倍率下获得更细致的观察结果。 通过这些成像技术,细胞成像检测系统能够实时捕捉细胞在不同生理状态下的变化。比如,研究人员可以通过成像观察癌细胞如何在不同药物作用下发生变化,从而帮助筛选出更具的药物。随着分辨率和成像速度的不断提升,现代细胞成像检测系统能够获得更加精确的细胞图像,甚至可以对活细胞进行长时间的动态监测。 细胞成像检测系统的应用领域 细胞成像检测系统在多个领域得到了广泛应用,特别是在生命科学和医学研究中。它在细胞生物学研究中起着至关重要的作用。通过精确观察细胞内的分子活动,研究人员能够揭示许多细胞内在的生物学过程,包括蛋白质的定位、细胞周期的调控以及细胞信号传导等。通过这些研究,科学家能够深入了解细胞的基本功能和机制。 细胞成像检测系统在癌症研究中的应用也尤为突出。通过实时观察肿瘤细胞的生长和扩散过程,科学家能够分析肿瘤细胞与正常细胞的差异,进而寻找新的靶点进行。细胞成像技术还在药物筛选中得到了重要应用,通过成像系统观察药物对细胞的影响,帮助筛选出更具和更安全的药物。 细胞成像检测系统的未来发展 随着技术的不断创新,细胞成像检测系统在未来将更加、高效。例如,随着超分辨率成像技术的发展,研究人员将能够观察到比以往更细微的细胞结构,甚至可能突破传统显微技术的分辨率极限。自动化和人工智能技术的结合也将进一步提高成像效率和分析准确性,减少人工干预,使细胞成像检测更加便捷。 在疾病诊断方面,细胞成像检测系统的未来也充满了无限潜力。通过结合生物标志物和成像技术,研究人员可以实现更早期的疾病诊断,特别是癌症、神经退行性疾病等疾病的早期筛查,从而提高的成功率。 结论 细胞成像检测系统作为生命科学研究中不可或缺的工具,其在细胞生物学、医学研究及药物开发等领域的应用具有重要意义。随着技术的不断进步,细胞成像系统的功能和应用场景也将不断扩展,推动着生命科学的发展。对于未来的医学和生物学研究,细胞成像检测系统必将继续发挥着关键作用,成为揭示生命奥秘的重要手段。
167人看过
2022-12-04 19:40:01高内涵应用案例——线粒体动力学检测和表型分析
引言新陈代谢是生物体内进行的化学变化的总称,是生物最基本的生命活动过程。细胞从环境汲取能量、物质,在内部进行各种化学变化,维持自身高度复杂的有序结构,保证生命活动的正常进行。作为细胞的“能量工厂”,线粒体在维持能量稳态方面发挥重要作用,可以调控蛋白质、脂质、溶质和代谢物产物的进出,并保护细胞质免受有害线粒体产物的影响。线粒体通过不断的分裂和融合,维持线粒体形态、分布和数量,维持细胞稳态,该过程被称为线粒体动力学。线粒体自噬是机体清除细胞内功能异常的线粒体的过程,是线粒体质量控制的主要机制。线粒体动力学的病理改变可导致生物能量功能受损和线粒体介导的细胞死亡,并与多种病理机制相关,包括缺血性心肌病,糖尿病,肺动脉高压,帕金森氏病,亨廷顿氏病,骨骼肌萎缩症、阿尔茨海默病等。线粒体大小和形状取决于它们在细胞内的位置以及不同细胞对能量的需求。当线粒体发生损伤时,它的形态和完整性会发生改变,如线粒体的数量、大小、长度和形状等。线粒体形态、结构和功能的检测对于了解线粒体的稳态以及功能状态有重要意义。高内涵成像分析系统非常适合进行线粒体表型和结构的研究。共聚焦成像和水镜可以提高成像质量并更好地显示线粒体结构,高内涵的图像分析工具可以帮助科研工作者获得不同表型的数字特征,线粒体表型和结构重排的分析模块可用于线粒体动力学为基础的细胞研究。 结果展示使用不同浓度的化合物,包括氯喹(抑 制线粒体循环),鱼藤酮(氧化磷酸化抑 制剂)和缬氨霉素(钾离子载体)处理 PC12(人神经母细胞瘤细胞)。将活细胞用线粒体染料 MitoTracker Orange  和 Hoechst 进行染色,利用 ImageXpress Micro Confocal 系统(Molecular Devices)进行成像,使用共聚焦模式和 40X 水镜拍摄活细胞的图像,分辨单个线粒体并检测线粒体形态变化。使用 MetaXpress 高内涵图像采集和分析软件中的 Custom Module Editor(自定义模块编辑器)分析图像,使用“Granularity”模块和“Find Fibers”模块识别圆形颗粒和细长的线粒体(图 1)。图 1 .线粒体形状的表型分析。Molecular Devices 高内涵成像分析系统适用于各种细胞模型中化合物的药物开发或毒性评估。不同化合物处理会导致线粒体形态变化,膜电位的损失、以及细胞的程序性死亡等。MetaXpress 软件非常适合进行线粒体形态的测定,可以定义每个对象的数量、面积、强度、长度和形状(表1,2)。使用具有共聚焦模式的 40X 水镜对细胞进行成像,MetaXpress 自定义模块编辑器分析图像(图 2)。这些检测结果可以计算剂量反应和各种化合物的有效浓度,以及用数字来表征线粒体结构动力学(图 3)。图 2 .化合物对线粒体的作用。使用MitoTracker Orange对线粒体进行染色( 黄色 ),对照组(A)、缬霉素(B)、鱼藤酮(C)。使用特定浓度的化合物(氯喹,鱼藤酮和缬氨霉素)处理 PC12 细胞,对细胞进行染色和成像。通过图像分析将线粒体结构确定为“纤维”(顶部)或“颗粒”(中部),底部为线粒体染色后荧光强度的变化。EC50的值取决于四个浓度依赖性复本和参数曲线的拟合(图 3)。图 3 .使用氯喹(绿色),鱼藤酮(红色)和缬氨霉素(蓝色)处理 PC12 细胞。EC50的值取决于四个浓度依赖性复本和参数曲线的拟合。在分析过程中,我们比较了水镜和空气镜对图像质量和分析的影响。结果显示,使用水镜可以提高图像质量,并且通常会导致 Z' 值增加( 表 3 )。图 4 显示了使用自定义模块编辑对线粒体表型进行计数和分析,以评估线粒体的健康、代谢、循环、复合效应和疾病状态等。并且,自定义模块编辑可以针对特定的细胞类型或疾病模型进行进一步的调整和修改。表 1 .用图 3 所示的曲线定量 EC50。表 2 .不同的对照和化合物处理方法的比较。上面四列数据分别是对照,10 um 的氯喹,300 nm 的鱼藤酮,和 10 nm 的缬氨酸霉素。表 3 .与空气镜相比,水镜可以提高图像质量,获得更高的Z’值。 图 4 .自定义模块编辑器(CME)。 总结Molecular Devices 高内涵成像分析系统适用于各种细胞模型中化合物的药物开发或毒性评估。使用高内涵成像和高级图像分析的线粒体动力学分析方法不仅可以量化线粒体的表型变化,而且这种多参数方法也可用于研究正常和病理结构变化以表征疾病模型或复合效应。 主要特点 获得高质量的图像,更好地显示线粒体形状和结构的变化以更有效、更精确的方式量化和测量线粒体的表型变化了解疾病的机制并评估各种细胞模型中的化合物毒性参考文献:[1]. Gottlieb RA, Bernstein D. Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium, 2016, 60(2): 88–101.[2]. Yoon Y, Krueger EW , Oswald BJ , et al. The Mitochondrial Protein hFis1 Regulates Mitochondrial Fission in Mammalian Cells through an Interaction with the Dynamin-Like Protein DLP1. Molecular & Cellular Biology, 2003, 23(15):5409-5420.[3]. McLelland GL, Soubannier V, Chen CX, et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. Embo Journal. 2014, 33(4):282-295.[4]. Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. Embo Journal. 2008, 27:433–446.[5]. Longo DL , Archer SL . Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. New England Journal of Medicine, 2013, 369(23):2236-2251.[6]. Qi X, Disatnik MH, Shen N, et al. Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Molecular biology of the cell. 2011, 22(2):256–265.[7]. Yu T, Sheu SS, Robotham JL, Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular Research. 2008, 79:341–351.[8]. Ong SB, Subrayan S, Lim SY, et al. Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury. Circulation, 121(18), 2012-2022.[9]. Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev. 2008, 22:1577-590.[10]. Konopka AR, Suer MK, Wolff CA, et al. Markers of Human Skeletal Muscle Mitochondrial Biogenesis and Quality Control: Effects of Age and Aerobic Exercise Training. The Journals of Gerontology. 2014, 69(4):371-378.
403人看过
2025-09-25 12:45:21细胞培养监测系统怎么分析
在现代生命科学研究与生物制药行业中,细胞培养的监测系统扮演着至关重要的角色。实现对细胞培养过程的高效、监控,不仅能够提升细胞质量,还能显著缩短研发周期、降低成本。比如,通过实时监测细胞状态、环境参数以及生物标志物,科研人员可以及时发现异常,采取相应措施,确保实验的成功率。本文将详细介绍细胞培养监测系统的分析流程,包括数据采集、参数监控、异常检测及数据分析方法,为科研和工业应用提供参考依据。 细胞培养监测系统核心在于数据的全面采集与分析。典型的系统会实时记录培养环境中的温度、pH值、溶氧浓度、CO2浓度及细胞生长状态等关键参数。利用高精度传感器,这些数据能够连续不断地传输到监控平台,为后续分析提供坚实的数据基础。监测不仅能反映培养环境的动态变化,还能揭示细胞的生理状态,从而辅助优化培养条件。 在分析方面,步是数据预处理,包括噪声滤除、数据平滑以及异常值检测。由于传感器数据常常受到外界干扰,预处理能够确保后续分析的准确性。然后,利用时间序列分析方法,观察环境参数的变化趋势。例如,通过趋势分析可以判断温度波动对细胞生长的影响,提前预警潜在风险。结合细胞生长曲线和代谢指标,进行多因素关联分析,可以深入理解培养环境与细胞状态间的关系。 异常检测是细胞培养监测中不可或缺的一环。通过设定阈值或建立统计模型,系统能够自动识别出温度偏离、pH值异常或溶氧不足等情况。这一环节通常采用支持向量机(SVM)、随机森林等机器学习算法,以区分正常与异常状态。及时的异常识别,有助于科研人员快速采取纠正措施,避免培养失败,确保样品质量。 随着技术发展,越来越多的系统开始融入人工智能(AI)技术,实现更智能化的数据分析。例如,深度学习模型结合大量历史数据,可预测未来参数变化趋势,提前发出警报。通过数据可视化工具,把复杂的监测数据转换成直观的图表与指标,帮助分析人员快速理解环境变化与细胞状态的关联,提升决策效率。 在实际应用中,细胞培养监测系统还需结合细胞类型和培养条件进行定制化调优。例如,在干细胞培养中,对于微环境的敏感性更高,监测系统需要具备更高的传感精度。另一方面,生物制药企业强调在GMP(良好生产规范)环境下的监测系统,要求高稳定性与合规性,确保数据的可追溯性和可信度。 技术的持续进步推动了细胞培养监测分析方法的革新。传统的单一参数监测逐渐被多参数、多源信息融合的系统所取代。多模态数据分析,结合环境传感器、显微影像和生物标志物检测,为科研人员提供全景式的细胞活性与环境状况图景。快速检测与分析相结合,不仅能优化培养流程,也能为细胞药物开发和 regenerative medicine 打下坚实基础。 细胞培养监测系统的分析流程涵盖了数据采集、预处理、趋势分析、异常检测与预测等环节。这些环节共同作用,帮助科研人员及生产企业实现对细胞培养环境的全方位掌控。在未来,随着技术的不断升级,这一系统将在提高细胞培养效率、确保样品质量和推动生命科学创新中发挥更为重要的作用。专业的分析方法与先进的监测设备,是推动细胞培养技术持续进步的关键所在。
88人看过
英国TRILLIUM控制阀
美国Dia-Vac气体采样泵
TRILLIUM控制阀
Dia-Vac气体采样泵
阻尼系数
智能高内涵成像分析系统
意大利 泵
智慧灯杆环境传感器
红外观察镜
TRILLIUM安全阀
减震器阻尼
粮食安全检测
六相继保校验仪
电镀测厚仪
anhinga
yes in japanese
智能高内涵成像分析系统
离子活度计
what is anemia
ayvalik turkey
godzilla 2014
GBW-1AS
cnbc
sub2000
flowchart
红外观察镜
HDX-8C
粗糙度仪传感器
自动探针台
WQ-300
cap粘度计
赛默飞AQ4500
藤田美術館