2025-01-10 10:50:40显微镜(正置显微镜)
正置显微镜是一种常用的科学仪器,主要用于观察微小物体或结构。它采用光线透过样品进行成像,具有放大倍数高、分辨率强等特点。正置显微镜通常由光源、物镜、目镜、载物台和调节系统等部分组成,可广泛应用于生物学、医学、材料科学等领域。用户可通过调节焦距、更换物镜等方式,观察不同尺寸和形态的样品。此外,正置显微镜还可配备各种附件,如相机、测量软件等,以满足更多样化的研究需求。

资源:11935个    浏览:32展开

显微镜(正置显微镜)相关内容

产品名称

所在地

价格

供应商

咨询

徕卡 DM1000正置显微镜 Leica DM1000
国内 上海
面议
徕卡显微系统(上海)贸易有限公司

售全国

我要询价 联系方式
徕卡DM1000 LED正置显微镜 LED生物显微镜
国内 上海
面议
徕卡显微系统(上海)贸易有限公司

售全国

我要询价 联系方式
徕卡DM500正置显微镜 Leica DM500
国内 上海
面议
徕卡显微系统(上海)贸易有限公司

售全国

我要询价 联系方式
徕卡DM750正置显微镜 Leica DM750
国内 上海
面议
徕卡显微系统(上海)贸易有限公司

售全国

我要询价 联系方式
Leica DM500 徕卡DM500正置显微镜
国外 欧洲
面议
徕卡显微系统(上海)贸易有限公司

售全国

我要询价 联系方式
2025-02-01 12:10:13正置显微镜和偏光显微镜
正置显微镜和偏光显微镜是显微镜领域中的两种常见设备,它们各自具有独特的功能和优势。正置显微镜主要用于常规观察,适合各类生物学和化学样本的检测,具有较高的分辨率和清晰度。而偏光显微镜则主要用于研究物质的光学特性,尤其是在矿物学、材料学等领域,能够帮助科研人员分析材料的光学行为和晶体结构。本文将对比这两种显微镜的结构、功能和应用,帮助读者深入了解它们的异同。 正置显微镜的特点与应用 正置显微镜是显微镜设计中为常见的一种类型,其显微镜体的物镜和照明系统位于样本上方,光线从下方穿透样本。这种设计使得样本可以更容易地进行观察和聚焦。正置显微镜具有很高的应用广泛性,适用于生物学、医学、病理学等领域的日常样本检测。尤其是在观察细胞、组织切片、血液样本等时,正置显微镜提供了较为清晰的图像。 正置显微镜的优势在于其简单、直观的操作方式,它提供了较高的物理空间和操作便利,使得实验人员可以方便地更换样本,调整焦距和放大倍率。随着技术的发展,现代的正置显微镜还配备了荧光观察、相差观察等功能,进一步增强了其多样化的应用。 偏光显微镜的特点与应用 偏光显微镜是一种专为观察具有各向异性光学特性的样品而设计的显微镜。它通过偏振光来探测样品的光学行为,能够揭示样品的晶体结构和物质的光学各向异性。这使得偏光显微镜在材料科学、矿物学、地质学等领域具有不可替代的作用。通过偏光显微镜,科研人员能够分析矿物的光学性质,如双折射、色散等,进而研究其结构特性。 偏光显微镜的独特优势在于其对复杂材料的观察能力,尤其在晶体结构、光学异性物质的检测方面。相比正置显微镜,偏光显微镜更适合在显微尺度下深入分析固体样品的物理特性,尤其在化学合成、新材料研发等领域中发挥了重要作用。 正置显微镜与偏光显微镜的区别 正置显微镜与偏光显微镜在光学设计、样品观察方式以及适用领域上有所不同。正置显微镜主要依赖透射光进行观察,而偏光显微镜则通过偏振光对样品进行照明,检测样品的各向异性光学性质。正置显微镜适用于生物学和医学领域的常规样本观察,而偏光显微镜更适合用于研究具有晶体结构和光学各向异性的固体样品,如矿物、晶体材料等。两者在结构设计上的差异,也使得它们在实验室应用中扮演着不同的角色。 结语 总体而言,正置显微镜和偏光显微镜各自拥有独特的应用领域和优势。正置显微镜因其简便的操作和高效的观察性能,广泛应用于生命科学和医学领域;而偏光显微镜则因其能够揭示材料的光学特性,成为材料科学、矿物学等领域的重要工具。了解这两种显微镜的特性与区别,有助于科研人员在选择设备时做出更的决策。
195人看过
2025-02-01 12:10:13正置荧光显微镜与倒置荧光显微镜
正置荧光显微镜与倒置荧光显微镜:选择与应用分析 在生物学研究和医学检测领域,荧光显微镜已成为一种不可或缺的工具。随着荧光显微镜技术的发展,市场上涌现出了不同类型的荧光显微镜,其中正置荧光显微镜和倒置荧光显微镜是两种常见且用途各异的设备。本文将对这两种显微镜的特点、应用场景及选择依据进行详细分析,帮助科研人员和实验室工作人员做出合理的设备选择,以满足不同的研究需求。 正置荧光显微镜的特点与应用 正置荧光显微镜(upright fluorescence microscope)以其独特的设计,广泛应用于细胞学、分子生物学及病理学等领域。其结构通常将光学元件布置在显微镜顶部,观察时样品位于镜头下方。这种设计可以更方便地进行细胞切片或活体样品的观察。其优点之一是可以通过简单的操作轻松获取高分辨率的荧光图像,同时对于样品的处理及拍摄角度也有一定的灵活性。 正置显微镜特别适用于薄切片样品的观察,因为样品通常被放置在载玻片上,能够在较短的距离内对其进行有效观察。由于光源和检测设备位于显微镜的上方,可以有效减少样品的热损伤和其他不必要的干扰。由于这种设备能够提供更为直观的荧光图像,常被用于细胞计数、标记分子定位及疾病标志物的研究等任务。 倒置荧光显微镜的特点与应用 与正置显微镜不同,倒置荧光显微镜(inverted fluorescence microscope)的光学系统设计是将镜头置于样品的上方,光源和反射镜位于样品下方。这一结构使得倒置显微镜在观察培养在培养皿中的细胞、活体组织和更大体积样品时具有明显的优势。倒置显微镜可以方便地从样品的底部进行观察,从而避免了细胞培养过程中需要过多的操作及扰动。 倒置荧光显微镜在细胞培养和组织学研究中得到了广泛的应用,特别是在活细胞成像及动态观察中,具有得天独厚的优势。其大的特点是可以直接在细胞培养皿中观察细胞的生长、分化、迁移等生物学现象,对于长期动态观察以及细胞互动研究具有不可替代的作用。由于倒置显微镜在设计上较为紧凑,样品放置便捷,适合用于高通量筛选等实验操作。 选择正置或倒置荧光显微镜的考虑因素 选择适合的显微镜需要综合考虑实验的具体需求及研究目标。若实验需要对细胞切片或薄片样品进行高分辨率的观察,正置显微镜可能更为适合。而如果实验对象是培养在培养皿中的活细胞或大尺寸的样品,倒置显微镜则更为高效。在实际应用中,科研人员应根据样品的性质、观察目标以及实验操作的便捷性,做出合理的选择。 专业总结 正置与倒置荧光显微镜各有特点,选择时需要充分考虑实验的实际需求。正置显微镜擅长处理薄切片及提供高分辨率图像,而倒置显微镜则在细胞培养和动态观察中具有明显优势。根据实验的需求及操作环境,选择合适的显微镜设备,是确保实验成功与数据精确性的关键。
157人看过
2025-10-27 15:15:20扫描透射电子显微镜是什么
扫描透射电子显微镜(STEM)作为现代材料科学、纳米技术以及生命科学研究中不可或缺的工具,凭借其高分辨率和优越的成像能力,极大地推动了微观世界的探索。本篇文章将深入解析扫描透射电子显微镜的基本原理、结构组成、技术优势及在科研领域的核心应用,旨在帮助读者全面理解这一仪器的技术特性及其科研价值。 一、扫描透射电子显微镜的基本原理 扫描透射电子显微镜结合了扫描电子显微镜(SEM)和透射电子显微镜(TEM)的优点,利用电子束扫描样品表面,生成高分辨率的内部结构图像。在操作过程中,电子束被聚焦成细束,逐点扫描样品,穿透样品后被不同区域的原子散射。通过检测电子的穿透和散射,STEM可以获取样品的微观结构和化学组成信息,其分辨率甚至可以达到亚纳米级别。 二、结构组成与工作原理 STEM主要由高强度电子枪、电子透镜系统、扫描控制系统和检测器组成。电子枪发射加速电子,经过一系列电子透镜聚焦成细电子束。扫描系统通过精密的扫描线控制电子束在样品上的运动轨迹,样品通过特殊的支持架固定在样品架上。检测器如能量色散X射线(EDS)和电子能谱分析(EELS)则供应材料的化学和电子结构信息。整个系统通过实时扫描与信号采集,重建出细腻的二/三维微观图像,提供丰富的结构与成分信息。 三、技术优势与创新点 相比传统的显微技术,STEM具有多项独特优势。其极高的空间分辨率使微米、纳米甚至亚纳米尺度的结构成像成为可能。STEM结合了多种分析技术,如EDS和EELS,可以在同一平台实现元素分析与化学状态检测。先进的扫描算法和电子源的优化提升了成像速度和成像质量,同时降低了样品的辐射损伤,尤其重要于生命科学和有机材料研究。 四、在科研中的广泛应用 科学研究中,STEM扮演着关键角色。从材料科学的角度,它被用来观察先驱材料如纳米粒子、二维材料和复合材料的原子排列。对于电子器件开发,STEM可以详细分析晶格缺陷和界面结构,为性能优化提供依据。在生命科学领域,STEM使得生物样品的超高分辨率成像成为可能,即使是在不破坏样品的基础上揭示细胞内部的复杂微观结构。除此之外,STEM在催化剂研究、能源存储以及环境科学中都显示出巨大的应用潜力。 五、未来发展方向与挑战 未来,随着电子源和检测器技术的进步,STEM有望实现更快的扫描速度和更高的空间分辨率。样品制备方面也在不断创新,以适应更复杂和多样的研究需求。STEM仍面临辐射损伤、样品制备困难以及设备成本高昂的挑战。跨学科的技术融合,如与人工智能的结合,也为其未来的发展打开了新的思路。 结语 扫描透射电子显微镜作为一种结合了高空间分辨率与多功能分析能力的先进显微技术,正不断拓展其在科学研究中的边界。借助其强大的成像和定量分析能力,STEM正为解码微观世界的奥秘提供无可替代的工具,推动科学从宏观走向微观、从定性走向量化的深层次理解。未来,随着技术的不断演进,STEM必将在材料科学、生物医药以及纳米技术等领域扮演更加核心的角色。
91人看过
2025-02-01 12:10:12显微镜偏光在哪看
显微镜偏光在哪看:如何正确观察偏光现象 在显微镜观察中,偏光现象的应用广泛,特别是在材料科学、矿物学和生物学等领域。了解如何通过显微镜观察偏光现象,对于科研工作者和相关领域的专业人士至关重要。本文将深入探讨偏光显微镜的工作原理,以及如何使用偏光显微镜来观察不同样本中的偏光现象,并为读者提供一些实用的技巧和建议。 1. 偏光显微镜的工作原理 偏光显微镜是通过使用偏光片来观察样品的偏振特性。偏光片通过限制光波的传播方向,使得光线只能沿一个特定的方向传播。当光线通过样品时,样品的结构、形态或组成物质可能会对光线进行旋转或偏折,这一现象即为偏光现象。通过对比未经过滤的自然光与经过偏光片过滤后的光,偏光显微镜可以有效地揭示样品内部的微观结构。 2. 显微镜偏光现象的观察方法 在使用偏光显微镜时,首先需要安装偏光片。这些偏光片一般位于显微镜的光路中,一个在光源位置,另一个位于物镜下方。调整偏光片的角度可以实现不同程度的光线偏振,进而影响观察到的样品效果。对于透明样品,偏光显微镜尤为有效,可以清晰地显示出样品的内部结构及其物理性质,如应力、晶体结构等。 3. 如何识别偏光现象 在显微镜下观察偏光现象时,样品会呈现出不同的色彩和对比度,这取决于样品的光学性质。观察时,通常需要旋转偏光片,以寻找佳的观察角度。在偏光显微镜中,偏光效应经常表现为样品表面的一些暗纹或色彩变化。通过这些变化,研究人员可以分析样品的组成物质、晶体结构及其物理特性。 4. 偏光显微镜的应用领域 偏光显微镜广泛应用于多个领域。它在矿物学中用于鉴定矿石的种类、分析矿物的结构;在材料科学中,用来研究材料的内应力和缺陷;在生物学中,偏光显微镜则常用于研究细胞结构和组织。偏光显微镜不仅能揭示常规显微镜无法观察到的细节,还能提供有关材料本质的重要信息。 5. 总结与建议 偏光显微镜在多个科研领域中具有重要的应用价值。了解其原理和使用方法,能够帮助专业人员更准确地观察和分析样本。在进行偏光显微镜观察时,正确的操作技巧和细心的调整偏光片角度是至关重要的,能够显著提高实验效果和观察精度。希望通过本文,您能对显微镜偏光现象的观察有更深入的理解,助力您的科研工作。 偏光显微镜是一项关键的技术手段,掌握其操作要领,能够帮助我们更好地研究微观世界。
163人看过
2025-02-01 09:10:16立体化显微镜名称是什么
立体化显微镜是一种用于观察微小物体细节的先进仪器,其主要应用于生物学、医学、材料科学等领域。在本篇文章中,我们将深入探讨立体化显微镜的定义、工作原理及其在不同专业领域中的重要性。通过对比其他类型显微镜,立体化显微镜展示了其独特的三维观察能力,使得在多个学科的研究中发挥着重要作用。 立体化显微镜的名称来源于其独特的三维图像呈现方式,这使得观察者可以通过立体视角对样本进行更精确的分析。与传统的光学显微镜不同,立体化显微镜通过两个物镜和两个目镜的配合,为观察者提供深度感和空间感,使得样本表面的微小细节得以更加清晰地呈现。这一特性使得它在医学诊断、电子显微学及精密工程中,尤其在活体观察和微观结构研究方面具有不可替代的优势。 除了在结构上展现三维效果外,立体化显微镜的成像质量也得到显著提升。它能够在不损害样本的情况下获得高清的图像,尤其是在对样本的表面结构进行高精度分析时,具有传统显微镜无法比拟的优势。立体化显微镜的光学系统通常包括多个透镜,具备较大的景深,能够清晰显示不同层次的细节。其应用不仅局限于基础的科学研究,也广泛应用于工业生产中,特别是在电子产品制造、质量控制及生物样本的精密检测等领域。 值得注意的是,立体化显微镜根据不同的观察需求可以配备不同的配件和功能。比如,荧光立体显微镜可以结合荧光标记物,以实现特定分子层次的观测;而数字化立体显微镜则可以将其观测结果实时传输到计算机,方便数据分析和存档。随着科技的不断进步,立体化显微镜的功能愈发强大,其在科研、教育及工业等多个行业的应用也日益增多。 立体化显微镜是一种革命性技术,凭借其的三维观察能力,成为多个专业领域中不可或缺的分析工具。在未来,随着技术的发展,立体化显微镜将在更广泛的领域中发挥更大的作用。
146人看过
收寄一体机
农药残毒快速检测仪(96通道)
电子恒温器
内毒素测定仪
水中微生物检测仪
高速研磨均质仪
HZ7000
便携式体温枪黑体炉
圣锐6000
工作站套件
英国牛津原子力显微镜
SC-XRD
N2843A
生物安全柜LB2-4B1
精密天平FA2004
EyeCGas工作原理
5-羟甲基糠醛
流动分析仪
显微镜(正置显微镜)
ZD-800F
HLP-C102
mh3560
铵测试试管
液压隔膜泵
OKO-2
霍尔效应测厚仪
富林泰克FT-210L AN
便携式红外黑体炉
富林泰克FT-210L
智能密封仪
钾比色皿试验
立式摄像机
流式细胞仪(双光六色)
宁波永新NP620
可编程双室炉PDP实验室
氧氮分析仪ON900