2025-01-10 10:53:59转盘共聚焦超分辨显微镜
转盘共聚焦超分辨显微镜是一种高端的光学成像仪器。它采用转盘式扫描技术和超分辨算法,能够实现样品的高分辨率、三维成像。该显微镜具有成像速度快、分辨率高、操作简便等特点,广泛应用于生物医学、材料科学等领域。通过转盘共聚焦超分辨显微镜,用户可以观察到更加细微的细胞结构和材料特征,为科研和实验提供有力的支持。其高性能和稳定性使其成为科学研究的重要工具。

资源:9488个    浏览:67展开

转盘共聚焦超分辨显微镜相关内容

产品名称

所在地

价格

供应商

咨询

超分辨共聚焦模块
国内 上海
面议
上海昊量光电设备有限公司

售全国

我要询价 联系方式
模块化超分辨共聚焦显微系统-LiveCodim
国外 欧洲
面议
清砥量子科学仪器(北京)有限公司

售全国

我要询价 联系方式
显微镜荧光校准片适用于宽视野/超分辨/共聚焦
国内 上海
面议
上海昊量光电设备有限公司

售全国

我要询价 联系方式
奥林巴斯 全新转盘式共聚焦超分辨显微镜IXplore SpinSR
国外 亚洲
面议
仪景通光学科技(上海)有限公司

售全国

我要询价 联系方式
德国徕卡 高分辨激光共聚焦 LIGHTNING
国外 欧洲
面议
徕卡显微系统(上海)贸易有限公司

售全国

我要询价 联系方式
2025-05-19 11:15:18透射电子显微镜怎么聚焦
透射电子显微镜怎么聚焦:深入解析聚焦原理与操作技巧 透射电子显微镜(TEM)作为一种高分辨率的科学研究工具,广泛应用于材料学、生命科学及纳米技术等领域。其关键技术之一就是聚焦,决定了显微镜成像的清晰度与准确性。在本文中,我们将深入探讨透射电子显微镜的聚焦原理、常见的聚焦方法及操作技巧,帮助用户更好地掌握这一精密设备,提升显微镜的使用效果和图像质量。 透射电子显微镜聚焦的原理 透射电子显微镜的工作原理依赖于电子束与样品相互作用,进而产生放大图像。聚焦的核心目标是通过电子透镜系统将电子束精确地集中到样品的特定区域,从而获得清晰的图像。显微镜中电子束的聚焦过程与光学显微镜有所不同,因为电子的波长比可见光波长短,能够提供更高的分辨率。 透射电子显微镜的聚焦方法 粗聚焦与精细聚焦 在使用透射电子显微镜时,首先进行粗聚焦。这是通过调整显微镜中的粗调焦轮来实现的,通常用于将样品大致放置在视野内。之后,通过精细调焦调整电子束,使图像更加清晰,精确控制焦距,以获取佳的图像细节。 电子束调整 为了确保聚焦效果,操作人员需要根据样品的厚度和类型适时调整电子束的强度和聚焦位置。过强的电子束可能导致样品损伤或图像失真,而过弱的电子束则可能影响图像质量。 离焦与焦距调节 通过对透射电子显微镜的离焦控制,可以优化图像的清晰度。离焦是指电子束未能准确聚焦到样品表面,通常表现为图像模糊。通过调节焦距并适当调整显微镜的透镜系统,可以有效避免这一问题,确保成像清晰。 自动聚焦技术 许多现代透射电子显微镜配备了自动聚焦系统,该系统能够自动检测和调整焦距,以确保成像的稳定性。虽然自动聚焦系统提高了操作的便捷性,但仍需在复杂样品或高分辨率成像时手动微调,以获得理想的效果。 影响聚焦效果的因素 样品的厚度与形态 样品的厚度直接影响电子束的穿透深度,从而影响焦点的准确性。较厚的样品需要较强的聚焦,而薄样品则相对容易聚焦。样品的形态和材质特性也会对聚焦效果产生影响,需要根据实际情况调整聚焦策略。 显微镜的光学系统 显微镜的光学系统,包括电子枪、透镜以及其他组件,都会影响聚焦效果。老化的组件或损坏的镜头可能导致聚焦困难,影响图像质量。因此,定期的显微镜维护和校准是确保其正常工作的关键。 操作技巧与经验 透射电子显微镜的操作不仅仅是一个简单的物理调整过程,操作人员的经验和技巧同样至关重要。熟练的操作员可以更好地掌握不同类型样品的聚焦要求,避免因操作不当导致的图像失真。 结语 透射电子显微镜的聚焦技术是显微镜成像的基础,直接关系到图像质量与分析结果的准确性。从粗聚焦到精细调焦,再到自动聚焦系统的应用,每个环节都需要操作人员细致入微的调整和操作。了解并掌握这些聚焦技巧,对于提升研究质量、减少误差具有重要意义。对于任何进行透射电子显微镜研究的专业人员而言,熟练掌握这些操作无疑是科研成功的关键。
172人看过
2023-03-16 14:23:50基于共聚焦显微技术的显微镜和荧光显微镜的区别
荧光显微镜主要应用在生物领域及医学研究中,能得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,是形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。以共聚焦技术为原理的共聚焦显微镜,是用于对各种精密器件及材料表面进行微纳米级测量的检测仪器。材料科学的目标是研究材料表面结构对于其表面特性的影响。因此,高分辨率分析表面形貌对确定表面粗糙度、反光特性、摩擦学性能及表面质量等相关参数具有重要意义。共焦技术能够测量各种表面反射特性的材料并获得有效的测量数据。VT6000共聚焦显微镜基于共聚焦显微技术,结合精密Z向扫描模块、3D 建模算法等,可以对器件表面进行非接触式扫描并建立表面3D图像,实现器件表面形貌3D测量。在材料生产检测领域中能对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用1.MEMS微米和亚微米级部件的尺寸测量,各种工艺(显影,刻蚀,金属化,CVD, PVD,CMP等)后表面形貌观察,缺陷分析。2.精密机械部件,电子器件微米和亚微米级部件的尺寸测量,各种表面处理工艺,焊接工艺后的表面形 貌观察,缺陷分析,颗粒分析。3.半导体/ LCD各种工艺(显影,刻蚀,金属化,CVD,PVD,CMP等)后表面形貌观察, 缺陷分析 非接触型的线宽,台阶深度等测量。4.摩擦学,腐蚀等表面工程磨痕的体积测量,粗糙度测量,表面形貌,腐蚀以及亚微米表面工程后的表面形貌。
197人看过
2023-08-21 11:50:20激光共聚焦荧光显微镜 活体荧光物质检查
激光共聚焦显微镜,简称CLSM(Confocal Laser Scanning Microscopy),是一种利用激光共振效应进行成像的显微镜。它通过使用激光束扫描样品的不同层面,将所得到的图像合成成一幅清晰的三维图像。与传统显微镜相比,激光共聚焦显微镜具有更高的分辨率和更强的穿透能力,可以观察到更加细微的结构和更深层次的物质。在活体荧光物质的检查中,激光共聚焦显微镜发挥了重要的作用。通过标记活体细胞或组织的特定结构或分子,激光共聚焦显微镜可以实时观察到这些结构或分子的活动和分布情况。在生物医学领域,它可以用于观察细胞的生长、分裂和死亡过程,研究细胞信号传导和分子交互作用等。在药物研发中,它可以用于观察药物在活体细胞或组织中的分布情况,评估药物的疗效和毒性。此外,在神经科学领域,激光共聚焦显微镜可以用于观察神经元的活动和连接,揭示大脑的工作机制。 NCF950激光共聚焦显微镜较宽场荧光显微镜的优点:l 能够通过荧光标本连续生产薄(0.5至1.5微米)的光学切片,厚度范围可达50微米或更大。(主要优点)l 控制景深的能力。l能够从样品中分离和收集焦平面,从而消除荧光样品通常看到的焦外“雾霾",非共焦荧光显微镜下无法检测到。(最重要的特点)l  从厚试样收集连续光学切片的能力。l 通过三维物体收集一系列图像,用于二维或三维重建。l收集双重和三重标签,精确的共定位。l 用于对在不透明的图案化基底上生长的荧光标记细胞之间的相互作用进行成像。l  有能力补偿自发荧光。 耐可视共聚焦成像效果图                                                          尼康共聚焦成成像效果图NCF950激光共聚焦显微镜应用,共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡;2、生物化学:酶、核酸、FISH、受体分析3、药理学:药物对细胞的作用及其动力学;4、生理学:膜受体、离子通道、离子含量、分布、动态;5、遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断;6、神经生物学:神经细胞结构、神经递质的成分、运输和传递;7、微生物学和寄生虫学:细菌、寄生虫形态结构;8、病理学及病理学临床应用:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断;9、生物学、免疫学、环境医学和营养学。NCF950激光共聚焦显微镜配置NCF950激光共聚焦配置表激光器激光405 nm、488 nm、561 nm、640 nm探测器波长:400-750nm,探测器:3个独立的荧光检测通道;1个DIC透射光检测通道扫描头最大像素大小:4096 x 4096 扫描速度:2 fps(512 x 512像素,双向),18 fps(512 x 32像素,双向),图像旋转: 360°扫描模式X-T, Y-T, X-Y, X-Y-Z, X-Y-Z-T针孔无级变速六边形电动针孔;调节范围:0-1.5毫米共焦视场φ18mm内接正方形图像位深12bits配套显微镜NIB950全电动倒置显微镜光学系统NIS60无限远光学系统(F200)目镜(视野)10×(25),EP17.5mm,视度可调-5~+5,接口Φ30观察镜筒铰链式三目观察镜筒,45度倾斜,瞳距47-78mm,目镜接口Φ30,固定视度;1)目/摄切换:(100/0,50/50,0/100);2)目视/关闭目视/可调焦勃氏镜NIS60物镜10×复消色差物镜,NA=0.45 WD=4.0 盖玻片=0.1720×复消色差物镜,NA=0.75 WD=1.1 盖玻片=0.1760×半复消色差物镜,NA=1.40 WD=0.14 盖玻片=0.17 油镜100×复消色差物镜,NA=1.45 WD=0.13 盖玻片=0.17 油镜物镜转换器电动六孔转换器(扩展插槽),M25×0.75聚光镜6孔位电动控制:NA0.55,WD26;相衬(10/20,40,60选配)DIC(10X,20X/40X)选配.空孔照明系统透射柯拉照明,10W LED照明;落射照明:宽场光纤照明6孔位电动荧光转盘(B,G,U标配);电动荧光光闸;中间倍率切换手动1X,1.5X、共焦切换机身端口分光比:左侧:目视=100:0;右侧:目视=100:0;平台电动控制:行程范围130 mm x100 mm (台面325 mm x 144 mm )最大速度:25mm/s;分辨率:0.1μm - 重复精度:3μm。机械可调样品夹板调焦系统同轴粗微动升降机构,行程:焦点上7下2;粗调2mm/圈,微调0.002mm/圈;可手动和电动控制,电动控制时,最小步进0.01um;DIC插板10X,20X,40X插板;可放置于转换器插槽;选配控制摇杆,控制盒,USB连接线软件软件:NOMIS Advanced C图像显示/图像处理/分析2D/3D/4D图像分析,经时变化分析,三维图像获得及正交显示,图像拼接,多通道彩色共聚焦图像
436人看过
2025-01-20 19:45:14运动粘度仪转盘怎么安装
运动粘度仪转盘怎么安装 在精密仪器的使用过程中,确保设备的安装过程得当,能够有效提升测试的准确性与仪器的使用寿命。运动粘度仪作为重要的测试设备,在许多行业中被广泛应用,尤其是在液体的粘度测试上,起着至关重要的作用。而在操作过程中,转盘的正确安装对于测量精度至关重要。本篇文章将详细介绍如何正确安装运动粘度仪的转盘,以确保设备能够稳定运行并提供准确的测试结果。 运动粘度仪转盘的结构与功能 运动粘度仪的核心组件之一就是转盘,它通常位于仪器的测量部分,负责液体的旋转与粘度的测量。转盘的精确安装直接影响到测量的稳定性和结果的可靠性。因此,了解转盘的结构及其功能,是正确安装的前提。 安装步骤 准备工作 在安装转盘之前,首先要确保运动粘度仪已经断电,并且工作环境清洁。准备好所需工具(如螺丝刀、扳手等)和配件,检查转盘和仪器部件是否完整无损。 确认转盘型号 不同型号的运动粘度仪所使用的转盘也有所不同。在安装之前,需要确认转盘型号与仪器型号的匹配,确保转盘能够适应仪器的工作要求。 安装转盘 将转盘对准安装位置,确保转盘与主机接口对接牢固。 使用工具固定转盘,确保转盘在转动时不会松动。 如果仪器配有锁定装置,确保锁定装置正常工作,防止转盘在运行过程中发生位置偏移。 检查安装状态 在完成安装后,要仔细检查转盘的安装是否牢固。轻轻转动转盘,观察是否存在卡顿现象。如果发现转盘在旋转过程中不平稳,需要重新调整安装位置,确保其平衡。 调试测试 安装完成后,可以进行设备的调试。通过测试运行来确认转盘的安装是否正确,并且确保仪器的粘度测试结果稳定且准确。 注意事项 在安装过程中,避免使用过大的力量,以免损坏转盘或仪器的内部结构。 安装前检查所有配件的完整性,尤其是转盘与仪器连接部位的螺纹和锁定装置。 定期检查转盘的安装情况,确保其处于最佳工作状态。 结论 运动粘度仪转盘的正确安装是确保仪器精度和稳定性的关键环节。通过严格按照步骤进行安装、调试与检查,可以大限度地提升测试的可靠性和仪器的使用寿命。对于专业人员而言,精确的安装过程不仅是保障测试结果的基础,更是日常维护的重中之重。
120人看过
2023-08-21 11:41:24热点应用丨OLED的光致发光和电致发光共聚焦成像
要点光致发光和电致发光是有机发光二极管(OLED)视觉显示发展的重要技术。与共聚焦显微镜相结合,使用RMS1000共聚焦显微拉曼光谱仪对OLED器件的光电特性进行成像研究。光谱和时间分辨成像获得了比宏观测试更详细的器件组成和质量信息。介绍近年来,有机发光二极管(OLED)已成为高端智能手机和电视全彩显示面板的领先技术之一1。使用量的快速增长是因为OLED提供了比液晶显示器(LCD)更卓 越的性能。例如,它们更薄、更轻、更灵活、功耗更低、更明亮2。在典型的OLED器件中,电子和空穴被注入到传输层中,然后在中心掺杂发光层中复合。这种复合产生的能量通过共振转移到掺杂分子中,从而使其发光。OLED发光的颜色取决于发光层中所掺杂分子的化学结构。当新的有机电致发光器件开发出来时,可以利用光致发光(PL)和电致发光(EL)光谱来表征单个元件和整个器件的光电特性。在本文中,RMS1000共聚焦显微拉曼光谱仪用于表征四种成像模式下OLED器件的光电特性:PL、EL、时间分辨PL(TRPL)和时间分辨EL(TREL)。使用共聚焦显微拉曼光谱仪来表征OLED的光谱和时间分辨特性获得了比宏观测试更详细的信息。材料和方法测试样品为磷光OLED器件,由圣安德鲁斯大学有机半导体光电研究组提供。将样品放置在冷热台(LINKAM)上,通过两个钨探针连接到器件电极上实现成像。使用RMS1000共聚焦显微拉曼光谱仪进行PL、EL、时间分辨PL(TRPL)和时间分辨EL(TREL)成像,如图1。图1  PL、TRPL、EL和TREL成像的实验装置。将装载样品的冷热台放置在显微镜样品台上,如图2所示。对于PL测试,使用532 nm CW激光器和背照式CCD探测器;对于TRPL测试,使用外部耦合的EPL-405皮秒脉冲激光器、MCS模式和快速响应的PMT。对于EL测试,使用Keithley 2450 SMU向OLED器件加电压,并用CCD探测器检测;对于TREL测试,使用Tektronix 31102 AFG向OLED加一系列短脉冲电压,使用MCS模式测试每个脉冲下的衰减。图2  (a)安装在RMS1000上的冷热台;(b) OLED器件电致发光宽场成像。测试结果与讨论大面积光致发光和电致发光光谱成像OLED首次采用PL和EL光谱相结合的方法进行研究。当使用共聚焦显微拉曼光谱仪成像时,可以表征材料在整个器件中的分布以及在发光强度和颜色均匀性方面的整体质量。图3中的PL成像和相应的光谱提供了器件上4个区域发光层分布的信息,还显示了电极的位置。图3  (a)OLED器件的PL光谱强度成像;(b)a中标记的点1和点2的PL光谱。白色和灰色代表PL强度,显示了有机发光层的位置。灰色区域为发光层被顶部电极覆盖的位置。在顶部电极穿过发光层的地方,PL强度降低为未覆盖区域强度的一半以下。这是由于顶部电极材料削弱了激光强度和光致发光强度。对于EL成像,钨探针连接到与区域2相交的电极上。图4中得到的EL图像和相应的光谱表明了EL发光仅发生在区域2中的发光层与电极重叠的区域。在PL成像中,空间分辨率主要取决于样品上激光光斑的大小。而在EL成像中,由于没有激光,因此是通过改变共焦针孔直径来改变空间分辨率(将针孔直径减小到25 μm)。图4  (a)OLED器件的EL光谱强度成像;(b)a中标记的点1和点2的EL光谱。EL强度在整个有源像素上不均匀,这对器件的质量有影响。在区域外边缘有两个(白色)垂直条带,强度比其余部分强。此外,存在许多EL强度降低的非发光区域。这表明器件有缺陷,理想情况下,OLED将在每个像素上呈现出密集和均匀的发光。高分辨率光致发光和电致发光光谱成像为了进一步研究,使用PL和EL对EL有源像素上的较小区域(图5a和图5b)进行高分辨成像。图5b网格内的上部区域是发光层与电极重叠的地方,下部区域是单独的发光层。图5c为 PL强度成像,再次表明被电极覆盖的发光层PL强度小于未覆盖的发光层。PL峰值波长图像(图5d)表明,有电极覆盖的发光层与未覆盖的发光层(611 nm)相比,PL发射峰发生红移(620 nm)。峰值波长的变化表明在不同的区域中能级不同。图5  (a) OLED器件电致发光宽场成像;(b)a网格内的高分辨率宽场成像;(c)PL强度成像;(d)相同区域的PL峰值波长成像;(e)EL强度成像;(f)相同区域的EL峰值波长成像。EL成像显示,与其余部分相比发射强度较弱的缺陷(图5e)波长发生明显红移(图5f)。这是由于缺陷处的EL能带的信号强度降低以及在662 nm处EL能带信号强度同时增加引起的。另外,在EL有源区域的最 底部的区域中,发生蓝移,这与在PL图像上看到的波长变化一致。高分辨率时间分辨光致发光和电致发光成像为获得额外信息,在同一区域进行TRPL和TREL成像,如图6所示。分别用激光脉冲和电脉冲,在MCS模式下测试614 nm处OLED的PL和EL衰减。利用单指数模型拟合衰减曲线。在图6a的TRPL成像中,EL活性区域(上部区域)中的PL寿命比EL非活性区域(下部区域)中的PL寿命短大约200 ns。如图6c所示,分别为800 ns和600 ns。这里观察到与图4中PL强度和波长图像的类似梯度,沿图向下方向的发射强度增强,并且发生了蓝移。因此,根据TRPL数据可得:当光激发时,通过掺杂带可获得不同的能级。在图6b中的TREL成像中,整个区域的寿命相似,大约为470 ns。发现EL寿命显著短于相同区域的PL寿命。图6   (a)OLED的时间分辨PL成像;(b)OLED的时间分辨EL成像;(c)a中选定区域的PL衰减曲线;(d)b中图像的EL衰减曲线。结论RMS1000共聚焦显微拉曼光谱仪用于测试OLED器件的PL、EL、TRPL和TREL成像。这些不同的成像模式提供了关于发光层和电极在整个器件中位置的详细信息,在工作条件下器件的发光强度和颜色均匀性,以及关于PL和EL过程中带隙能量的相对信息。参考文献1. A. Salehi et al., Recent Advances in OLED Optical Design, Adv. Funct. Mater., 2019, 29, 1808803, DOI: 10.1002/adfm.201808803.2. J. M. Ha et al., Recent Advances in Organic Luminescent Materials with Narrowband Emission, NPG Asia Mater., 2021, 13, 1–36, DOI: 10.1038/s41427-021-00318-8.天美分析更多资讯
940人看过
PCT饱和蒸汽压力老化试验箱
低温超高速离心机
硬度仪厂家
显微熔点仪厂家
转盘共聚焦超分辨显微镜
PCT压力加速老化试验箱
PCT压力蒸煮老化试验箱
智能硬度仪
倒置荧光模块