- 2025-01-10 17:02:23超快三维荧光成像系统
- 超快三维荧光成像系统是一种先进的成像技术,能够在极短时间内捕获生物样本的三维荧光图像。该系统结合了高速摄像技术与高灵敏度荧光检测,实现了对生物动态过程的实时、高分辨率观测。它广泛应用于生命科学研究中,如细胞生物学、神经科学及发育生物学等领域,帮助科学家深入理解生物分子的时空分布与相互作用。系统具备高稳定性与易用性,支持多种荧光标记方法,为科研工作者提供了强大的研究工具。
资源:12137个 浏览:33次展开
超快三维荧光成像系统相关内容
超快三维荧光成像系统资讯
-
- 展会动态丨辰英S3000亮相西安生物医药装备展,助力西北地区科研之路
- 长光辰英S3000超快三维荧光成像系统亮相2024西安生物医药及技术装备展
-
- 展会邀请丨长光辰英将携超快三维荧光成像系统亮相2024中国(西安)生物医药及技术装备展
- 2024中国(西安)生物医药及技术装备展览会将于9月26至28日在西安临空会展中心举行。
-
- 展会邀请丨长光辰英将携超快三维荧光成像系统亮相2024中国(西安)生物医药及技术装备展
- 2024中国(西安)生物医药及技术装备展览会将于9月26至28日在西安临空会展中心举行。
-
- 2023 CBIC 深圳圆满落幕,长光辰英收获满满!
- 近年来,越来越多的活体荧光染料的出现,促使显微技术的需求向活体动态三维成像的趋势发展,长光辰英推出了S3000超快三维荧光成像系统,采用三条纹转盘共聚焦成像技术
-
- E馆 E015丨长光辰英邀请您共赴2023EBC第八届易贸生物生产大会!
- 时间2023年3月18-19日,地点苏州国际博览中心 E馆 E015
超快三维荧光成像系统文章
-
- S3000 超快三维荧光成像系统
- 助您实现“共聚焦自由”
-
- S3000 超快三维荧光成像系统
- 助您实现“共聚焦自由”
-
- GO!北京丨长光辰英S3000超快三维荧光成像系统在北京脑科学与类脑研究所完成调试装机
- 6月7日,长光辰英S3000超快三维荧光成像系统在北京脑科学与类脑研究所完成调试装机。
超快三维荧光成像系统产品
产品名称
所在地
价格
供应商
咨询

- 超快三维荧光成像系统
- 国内 吉林
- 面议
-
长春长光辰英生物科学仪器有限公司
售全国
- 我要询价 联系方式

- HORIBA EasyRatioPro 超快离子荧光成像系统
- 国外 欧洲
- ¥500000
-
上海睿测电子科技有限公司
售全国
- 我要询价 联系方式

- 纳米空间分辨超快光谱和成像系统
- 国外 欧洲
- 面议
-
清砥量子科学仪器(北京)有限公司
售全国
- 我要询价 联系方式

- X射线-荧光双模态成像系统
- 国内 上海
- 面议
-
上海数联生物科技有限公司
售全国
- 我要询价 联系方式

- 荧光光谱仪-HORIBA超快时间分辨荧光光谱仪Ultima
- 国外 亚洲
- 面议
-
HORIBA(中国)
售全国
- 我要询价 联系方式
超快三维荧光成像系统问答
- 2023-05-26 10:20:02FluorCam-Pro植物多光谱荧光成像系统
- FluorCam-Pro植物多光谱荧光成像系统是FluorCam叶绿素荧光成像技术的最 新高级扩展产品。此系统既可用于PAM脉冲调制式叶绿素荧光动态成像分析,又可用于UV紫外光对植物叶片激发产生的多光谱荧光成像测量分析,还可选配滤波器组对GFP、RFP、YFP、SYBR Green等荧光蛋白和荧光染料进行稳态荧光成像测量。测量对象包括叶片、果实、花朵、整株拟南芥或其他小型植株、苔藓、微藻、大型藻类乃至特定的动物样品。应用领域:植物光合生理生态植物逆境胁迫生理与易感性植物初级代谢与次级代谢植物表型组学成像分析(Phenotyping)作物遗传育种与抗性筛选种子萌发与活力监测转基因植株筛选功能特点:多激发光-多光谱荧光成像技术:通过两种以上不同波长的光源激发植物样品中不同的发色团发出荧光并进行成像检测,即为多激发光多光谱荧光成像技术。植物的多光谱荧光主要包括叶绿素荧光、UV紫外光激发多光谱荧光和荧光蛋白荧光FluorCam-Pro无需更换任何配件即可同步实现多激发光-多光谱荧光成像功能:PAM脉冲调制式叶绿素荧光成像紫外激发F440、F520、F690、F740多光谱荧光成像GFP、RFP、YFP等常用荧光蛋白成像可根据用户需要定制荧光蛋白或荧光染料成像,如BFP、CFP、SYBR Green、DAPI等可对黄酮、花青素含量进行定量测量可进行自动重复成像测量和无人值守监测,可设置实验程序(Protocols)自动循环成像测量,成像测量数据自动按时间日期存入计算机(带时间戳)测量样品为各种活体植物样品,包括叶片、花卉、果实、整株拟南芥或其他小型植物、微藻(包括液滴、多孔板、固体培养基)及大型藻类等技术指标:一体式设计,自带暗适应箱体最 佳成像面积:20×20cm测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm ,Fv',Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数;紫外激发多光谱荧光成像参数:F440、F520、F690、F740;荧光蛋白荧光强度参数Ft;每项参数均可显示对应二维荧光彩色图像。并可测量计算黄酮醇指数Flavonol Index,、花青素指数Anthocyanin Index。具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑1)Fv/Fm:测量参数包括Fo,Fm,Fv,QY等叶绿素荧光参数2)Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等叶绿素荧光参数3)Quenching荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,ΦII,NPQ,Qp,Rfd,qL等50多个叶绿素荧光参数4)Light Curve光响应曲线:不同光强梯度条件下Fo,Fm,QY,QY_Ln,ETR等叶绿素荧光参数5)MultiColor紫外激发多光谱荧光成像(选配)6)FPs荧光蛋白成像:GFP、YFP、RFP、BFP等(选配)荧光激发光源组:全LED光源,包括620nm红光、5700K冷白光、735nm远红光、365nm紫外光,445nm品蓝光,470nm蓝光,505nm青光,530nm绿光,590nm琥珀色光等高分辨率CCD相机1)图像分辨率:1360×1024像素2)时间分辨率:在最 高图像分辨率下可达每秒20帧具备7位滤波轮,标配叶绿素荧光滤波器,根据用户需要可定制紫外激发多光谱荧光和GFP、RFP、YFP、BFP等荧光蛋白专用滤波器FluorCam叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单自动测量分析功能:可设置一个实验程序(Protocol)自动无人值守循环成像测量,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机(带时间戳)成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(>1000)输出结果:高时间解析度荧光动态图、荧光动态变化视频、荧光参数Excel文件、直方图、不同参数成像图、不同ROI的荧光参数列表等应用案例:1.抗病毒基因研究:叶绿素荧光成像与GFP成像联合分析法国国家农业科学研究院一直致力于马铃薯y病毒组的抗病基因研究,通过不同基因编辑处理方法,验证抗病毒分子机制。相关研究中,研究人员利用FluorCam多光谱荧光成像系统的GFP荧光蛋白成像功能,定量分析感染面积与病毒积累量,从而直观地反映了不同基因功能对拟南芥病毒抗性的影响。同时,叶绿素荧光成像则反映病毒对光合系统的损伤,同步提供植物的光合表型信息。参考文献:Zafirov D, et al. 2021. When a knockout is an Achilles' heel: Resistance to one potyvirus species triggers hypersusceptibility to another one in Arabidopsis thaliana. Mol Plant Pathol. 22: 334–347Bastet A, et al. 2019. Mimicking natural polymorphism in eIF4E by CRISPR‐Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnology Journal 17: 1736–1750Bastet A, et al. 2018. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnology Journal: 1–132.不同颜色凌霄叶片的叶绿素荧光与紫外激发多光谱荧光成像分析(易科泰EcoTech®实验室)产地:欧洲
683人看过
- 2023-05-18 16:59:34全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快
- 全共线多功能超快光谱仪BIGFOOT MONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT 全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:高精度激光扫描显微镜NESSIE MONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。 图2. 高精度激光扫描显微镜NESSIE 高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。 图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷 BIGFOOT+NESSIE应用案例:1. 高精度激光扫描显微镜用于材料表征 美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4. (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022). 2.二维材料中激子相互作用和耦合的成像研究 过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022) 3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究 当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。黄迪教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学对于理解导致其形成的成对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)
211人看过
- 2025-09-05 13:00:22植物荧光成像系统是什么
- 植物荧光成像系统是一套通过激发与捕获叶片荧光信号,在空间上展示植物生理状态的成像平台。它以叶绿素荧光为核心,结合高效的光源、精密的探测器与数据处理工具,能够在不破坏样本的前提下,评估光合效率、应激响应与营养状况。本文围绕系统的工作原理、关键组成、常用指标与应用场景展开,帮助读者理解其在植物研究与农艺改良中的应用价值。 系统的核心原理是用特定波段的光激发叶绿素及其他荧光色素,随后捕获发射信号。常见激发波段覆盖蓝光与可见光区,发射峰多集中在680–750 nm区间。硬件层面通常包含激发光源、光学分光与滤光件、荧光探测器(如CCD/CMOS相机)以及数据处理单元。为获得均匀且可比的图像,系统会进行暗场和背景校准,并可按需要设置单光路或多通道,实现对叶面不同区域的定量分析。 在定量指标方面,具代表性的是叶绿素荧光参数,如Fv/Fm、ΦPSII、qP与NPQ等,通过成像可获得叶片的空间分布信息。Fv/Fm反映潜在光化学效率,ΦPSII指示实际光合电子传输效率,NPQ揭示热耗散过程。结合时间分辨或多光谱成像,还能对干旱、氮缺乏、病害侵染等胁迫引发的光合变化进行早期诊断,提升作物表型分析和田间健康监测的有效性。 在设备选择与数据分析方面,应关注光谱覆盖、分辨率、成像速度与热稳定性。激发光源需覆盖目标波段并保持均匀,滤光系统要有效区分激发与发射光,探测器具备低噪声与高动态范围。数据软件应支持图像校正、ROI提取、指标计算以及与实验设计平台的对接,便于实现高通量分析和跨场景对比。对于田间应用,便携性、抗干扰性与数据传输能力也同样重要。 植物荧光成像系统广泛服务于基础研究、作物育种与智慧农业。选型时可结合研究目标和预算:若关注全局光合效率分布,优先考虑大场景成像与高通量能力;若需要深入的光化学参数,则应选择多波段激发与高信噪比探测的设备。并结合样本形态、维护成本与数据分析能力,必要时可搭配自动化样品台与云端分析平台。 未来,随着成像技术与数据智能的深度融合,植物荧光成像系统在实时监测、病害早筛与表型数据库建设方面将发挥更大作用。通过标准化测量流程与开放数据接口,研究者与农艺运营者能够实现跨场景的比较分析,推动育种改进与生产效益的提升。
89人看过
- 2023-05-26 11:43:55全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快光学实验必备!
- 全共线多功能超快光谱仪BIGFOOTMONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:若您对设备有任何问题,欢迎扫码咨询!高精度激光扫描显微镜NESSIEMONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。图2. 高精度激光扫描显微镜NESSIE高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷若您对设备有任何问题,欢迎扫码咨询!BIGFOOT+NESSIE应用案例:01高精度激光扫描显微镜用于材料表征美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4. (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022).02二维材料中激子相互作用和耦合的成像研究过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022)03掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制:(i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。美国德克萨斯大学奥斯汀分校李晓勤教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学研究对于理解导致其形成的配对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)若您对设备有任何问题,欢迎扫码咨询!
203人看过
- 2025-09-05 13:00:22植物荧光成像系统怎么操作
- 本篇文章聚焦植物荧光成像系统的操作要点,围绕设备选型、样品制备、参数设置、图像获取及后续分析,提供一套可落地的操作流程,帮助科研人员快速获取稳定、可重复的荧光信号。 一、设备与配置 选择适配的系统时,光源、滤光片组与探测器要协同工作,确保激发与接收的光谱匹配。常见组合包括白光或LED光源配合特定激发滤光片,以及高分辨率相机或冷却CCD/CMOS探测器。应关注工作距离、样品托盘的兼容性和温控稳定性,避免环境波动影响荧光强度。为了便于日后比较,尽量选用带有元数据记录功能的成像平台,并设定统一的工作模式。 二、样品制备与预处理 样品制备是成像质量的前提。对植物组织,需确保荧光探针或转基因荧光蛋白表达均匀,必要时进行固定或低温处理以减少自发荧光。切片厚度要在视觉透射与荧光信号之间取得平衡,避免过厚造成散射。使用阴性对照与阳性对照,能帮助判定背景与特异信号的比值。避免使用会引入额外荧光的材料和染料,保持样品表面干燥、整洁以减少背景。 三、成像参数与操作流程 在获取图像前,先校准对焦与光路。设定激发光强应尽量低以减少光漂白和光毒性,曝光时间建议从短到长逐步优化,通常在50–200 ms区间测试,增益根据探测器灵敏度调整,但要避免放大噪声。选择合适的荧光通道与滤光片组,确保激发与发射波段互不干扰。每次变更参数后记录条件,确保可追溯性。进行多点采集并留有重复点以评估一致性,必要时进行Z轴堆叠以获取三维信息。 四、数据处理与质量控制 原始影像应进行背景扣除、去噪与均一化处理。ROI(感兴趣区域)分析可用于定量荧光强度,注意统一ROI定义标准。保存时同一实验组采用统一单位与命名规则,附带设备型号、激发波段、曝光、温度等元数据,确保跨批次可比性。对照组与重复样本之间的差异应通过统计方法评估,必要时进行信号归一化。对于长时间成像,记录光源稳定性与环境条件的变动,以排除非生物原因的信号漂移。 五、常见问题与排查 背景过高或信号不足时,先检查滤光片是否匹配、样品表面是否清洁,以及对焦是否准确。若出现条纹或斑点,可能是探测器热噪或光路污染,应进行黑场校准或清洁光路元件。若有过度光漂白现象,降低激发强度或缩短曝光时间,增加重复采样来提高信噪比。对比度不足时,可尝试调整伽玛值或应用局部对比度增强,但应记录并报告具体参数。 六、标准化与记录 建立标准操作流程(SOP),将设备设置、样品制备、成像参数、后处理步骤及数据存档逐条记录。统一的元数据格式包括光源型号、滤光片编号、波长、曝光时间、增益、温度、样品处理方法等。定期进行设备维护与性能验证,确保不同批次之间的可比性。通过规范化流程,提升实验的重复性与数据的可信度。 七、应用场景与实用要点 植物荧光成像广泛应用于叶绿素荧光分析、 ROS、信号传导与转基因表达的动态观测。关注点包括信号特异性、背景控制以及对照组的设定。将结果以可再现的图像与定量数据呈现,便于在论文、专利及项目评审中清晰传达研究结论。 总结:规范化的操作要点与严谨的数据管理,是提升植物荧光成像数据质量与实验可重复性的关键。
90人看过

