- 2025-01-10 10:49:53硅藻土载体
- “硅藻土载体”是化学物质,不属于我的科学仪器专业领域。为了获取准确的信息,我建议您咨询化学或相关领域的专家,或者查阅相关的专业资料。另外,您是否有其他关于科学仪器的问题或需求呢?我很乐意为您提供相关的信息和帮助。
资源:2612个 浏览:28次展开
硅藻土载体相关内容
硅藻土载体产品
产品名称
所在地
价格
供应商
咨询

- 二氧化硅载体,硅藻土载体
- 国内 江苏
- ¥55
- 南京瑞之祥贸易有限公司
- 我要询价 联系方式

- 硅藻土 545
- 国外 美洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式

- 酸洗硅藻土
- 国外 欧洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式

- 酸洗硅藻土
- 国外 欧洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式

- 硅藻土BET比表面积分析仪
- 国内 北京
- 面议
-
贝士德仪器科技(北京)有限公司
售全国
- 我要询价 联系方式
硅藻土载体问答
- 2023-06-16 14:28:25构建表达载体想降本增效?看这一篇就够了
- 想要开发有稳定生产能力的细胞株,除了在细胞开发中对于细胞表达能力的评估筛选以外,前期的表达载体的构建过程也非常重要。使用纳升移液技术可以显著提高细胞株过程基因合成,表达载体构建以及转染筛选等实验的实验效率,降低实验成本。声波移液展示Echo®移液系统依靠专 利技术(U.S. Patent 6938995)和创新方法改变移液操作在整个生命科学领域中的应用。它采用动态液体分析(Dynamic Fluid Analysis™, DFA)技术和声波移液(Acoustic Droplet Ejection,ADE)技术,让研究人员能够移取多种不同类型的液体,完成微量小体积(2.5/25nL)的移液工作。全流程无需枪头耗材,无交叉风险。纳升移液技术让细胞株构建更快、更准、更经济更快—— Echo快速任意孔到任意孔移液,极速基因组装在质粒构建前期,需要非常多的准备实验,如基因组装中将不同的DNA片段混合,在检测反应中将不同的样本组合,在NGS文库构建过程中将多个文库pooling到一起,在CRISPr基因编辑中构建sgRNA文库等等,这些实验都需要进行快速、灵活的加样移液,就算使用高通量的移液工作站,往往也要好几小时才能完成。纳升移液技术Echo的任意孔到任意孔的快速移液特点则让此类应用简单、快速化,每次转移花费更少时间更短。这为基因组装节省了高达82%的时间。从母板任意孔转移任意体积样品到目标板任意孔中,实现快速挑选、样品混合和组合。有效缩短实验周期更准—— Echo加样精 准,提高克隆效率利用质粒上含有的抗性选择进行筛选,需要对筛选结果进行鉴定, 而qPCR也是常用的鉴定方法之一。使用Echo纳升移液技术进行微量化克隆筛选鉴定,可以以更少的实际成本精 准完成实验。使用Echo完成 qPCR的反应体系构建,通过减少每个组件的体积,并使用不使用tips的Echo,将反应体积缩小10倍,从10 μL减少到1 μL,成本降低了8倍。精 准减小实验体积更经济—— Echo微量化,缩小反应体系,让新技术更经济系统化的设计必然会带来更大的样本量,从而导致更高的费用, Echo采用声波的能量进行无接触式移液,且每滴液滴仅为2.5nL或25nL,因此可以直接省去吸头耗材的消耗,也可以将检测反应体系降低4-100倍,使成本急剧下降。有效缩减试剂成本Gibson and Golden Gate Assembly实验:不同反应体积的成本效益和组装效率比较产品信息“仅用于科研,不用于临床诊断”
183人看过
- 2023-05-11 11:20:33直播 | 深入外泌体: 冷冻电镜下的新一代药物递送载体
- 细胞排出废物的“垃圾桶”,到如今科研界热度居高不下的宠儿,外泌体在某种意义上完成了质的飞跃。外泌体是细胞分泌到胞外的一种囊泡(Extracellular Vesicles,EVs),其大小为30-150nm,具有双层磷脂膜结构,含有丰富的内含物(包含蛋白质、核酸等多种活性生物分子)。外泌体应用于疾病诊断、药物装载等方面,它穿透性极强、吸收更佳、低免疫原性,使得它成为了非常优质的“活性物质递送系统”。外泌体由蛋白质、核酸、脂质组成,含有较高水平的胆固醇、鞘磷脂及饱和脂肪酸。相比其他载体,外泌体在递送药物方面有着显而易见的优势:①外泌体的安全性非常高;②外泌体有非常好的靶向性潜力;③外泌体具备工程改造潜力;④外泌体有优秀的多分子装载能力。药物递送系统(DDS)的表征是新药研发致关重要的一个环节,反应DDS 的特性。冷冻电镜是外泌体直观表征的不二利器,通过将外泌体样本快速冷冻,可以获得外泌体近生理状态下形貌信息细节,直接表征多项指标;还可以通过冷冻电子断层扫描技术获得外泌体近生理状态下的3D结构,为新药开发打开纳米世界的大门。随着冷冻电镜技术的不断发展,已经突破分辨率极限,达到原子级别。冷冻电镜技术对外泌体的探究越来越细致,为了更深入的走进外泌体,了解冷冻电镜下的新一代药物递送载体,药融圈联合赛默飞共同邀请到苏州唯思尔康科技有限公司SVP何新军以及赛默飞世尔科技材料与结构分析业务拓展经理刘靖怡2位行业专家,于2023年5月18日做客线上直播间,揭开外泌体的神秘面纱。
234人看过
- 2022-09-10 14:33:21光散射技术在疫苗和基因载体中的应用
- 光散射技术解决方案:疫苗和基因载体的关键质量属性表征和质量控制01会议详情主题:光散射技术在疫苗和基因载体中的应用时间:2022年9月15日 19:00内容:SEC-MALS、DLS原理讲解DLS、HT-DLS实例应用:AAV/LVSEC-MALS的AAV分析(Vg/Cp)方法FFF-MLAS与SEC-MALS的对比:LNP分析02参加会议会议链接:https://paj.h5.xeknow.com/sl/2gT5z2或扫码加入会议
183人看过
- 2021-05-21 13:37:30mRNA体内递送载体有哪些?
- 早在几十年前,研究者们首次发现,外源的mRNA经肌肉注射至小鼠体内后有相应的蛋白表达,这也成为了mRNA疫苗的雏形。人们一直以来都希望能够生产出一种灵活、易于生产、安全有效的疫苗。而mRNA疫苗就是一种可以满足这些需求的,具有良好的发展前景的新疫苗。而时至今日,在新冠疫情的背景下,mRNA疫苗也不负重望的成为了一颗耀眼的明星,辉瑞、Moderna等公司的mRNA新冠疫苗相继展现出了良好的预防效果,使得mRNA疫苗愈发受到人们的关注。而合适的mRNA递送载体一直是制约mRNA疫苗发展的一大瓶颈,一个合适的mRNA递送载体可实现对mRNA的GX包载,并在体内实现良好的表达效果。目前常用的几种mRNA递送载体主要包括:聚合物材料、多肽、脂质纳米粒。下面我们就简要介绍一下这几种mRNA递送载体。(一) 聚合物材料早期人们采用聚合物材料来进行核酸的递送,如聚乙烯亚胺(polyethylenimine,PEI)、聚氨基酯(PBAE)、壳聚糖等。大多数用于mRNA递送的聚合物材料都需要进行脂肪酸链的修饰,以改善其安全性,但这些材料的应用目前都只停留在临床前研发阶段。有研究就采用PEI用于将DNA通过吸入的方式输送到肺部。然而PEI不易分解,因此对于可能需要的重复给药,聚合物可能累积并引起副作用。【1】也有研究采用分支型的聚胺基聚合物进行mRNA的包载,构建一套树状聚合物RNA纳米粒,并成功在体内表达出了对抗翟卡病毒、埃博拉病毒的相关抗体。【2】图1. 麻省理工研究团队采用聚合物材料制备的mRNA纳米粒【1】(二) 多肽也有少量的研究中采用了细胞穿膜肽(Cell-penetrating peptides,CPPs)用于mRNA的递送,如采用包含有两亲性序列精氨酸-丙氨酸-亮氨酸-丙氨酸(Arg-Ala-Leu-Ala)的细胞穿膜肽来结合mRNA构建成一种CPP-mRNA复合纳米粒,其可以发挥CPP跨越细胞膜的能力,将mRNA很好的递送到细胞内,并引发了良好的T细胞应答。【3】(三)脂质纳米粒人们采用离子化的脂质进行siRNA的递送,并在2018年由Alnylam制药公司推出了上市的RNAi药物Onpattro,其就是通过离子化的脂质制备的脂质纳米粒(Lipid nanoparticles,LNPs)进行siRNA的包载和递送。受其启发,目前研究者们也纷纷选择LNPs作为mRNA递送的载体。LNPs主要通过阳离子的磷脂材料与其他辅助磷脂完成颗粒的构建,通过RNA所带的负电与阳离子磷脂的正电相互吸附,可实现较高的包载效果,并且在体内由低密度脂蛋白介导的胞吞机制可使纳米粒子成功被细胞摄取,实现良好的细胞摄取效果。在胞内经由内含体途径将mRNA成功释放,转运到细胞质中进行表达,产生相应的蛋白表达。同时良好的体内安全性也使他更具竞争力,在多种传染性疾病的预防及ZL方面展现出了较好的效果。其中已有大量的研究已经进入了临床研究阶段,如在两项临床一期的流感病毒疫苗研究中,通过LNPs包载核苷酸修饰的mRNA,所产生的机体免疫应答与传统的灭活流感病毒疫苗相似,并且安全性也基本一致。【4】在新冠疫情的背景下,辉瑞与Biotech的mRNA疫苗更是紧急上市,同样采用LNPs作为mRNA的递送载体,并展现出了超过90%的有效率。图3. 常见的LNPs构造目前在多种mRNA递送载体中,LNPs还是更优的选择,但是如何开发出新的配方材料,打破相关ZL壁垒,同样是相关研究者争相努力的方向。同时伴随着RNA序列编辑、RNA的大批量快速生产等相关研究的进一步发展,未来mRNA疫苗相关技术会愈发成熟,会引领接下来一段时间的药物研发相关的风潮。 参考文献:1. James Cliff Kaczmarek, Kevin J Kauffman et al.: Optimization of a Degradable Polymer-Lipid Nanoparticle for Potent Systemic Delivery of mRNA to the Lung Endothelium and Immune Cells. Nano Lett 2018, DOI: 10.1021/acs.nanolett.8b02917.2. Chahal JS, Khan OF, Cooper CL et al.:Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci USA 2016,113:E4133-4142.3. Udhayakumar VK, De Beuckelaer A et al.: Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Adv Healthc Mater 2017, 6.4. Feldman RA, Fuhr R et al.: mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019, 37:3326-3334.纳米药物制备系统应用范围:
516人看过
- 2022-09-10 14:34:26分析与表征:新型聚合物递送载体有望解决后眼部给药的递送难题
- 分析与表征:新型聚合物递送载体有望解决后眼部给药的递送难题Intravitreal Polymeric Nanocarriers with Long Ocular Retention and Targeted Delivery to the Retina and Optic Nerve Head Region视网膜等后眼部组织在许多严重的眼部疾病中会受到影响,由于眼部结构是非常复杂的,所以是否可以成功地将治 疗药物递送至视网膜等后眼部组织具有极大的挑战性,其中玻璃体腔内注射法是常用方式之一,但该方式需要延长注射的间隔时间。研究人员使用聚乙二醇、聚己内酯和碳酸三亚甲基酯合成三嵌段共聚物,并使用1H-NMR和凝胶渗透色谱法GPC对聚合物的结构进行表征。研究表明:该聚合物可自组装成聚合物泡囊和聚合物胶束。通过动态光散射DLS对其尺寸进行表征,平均直径分别约为100nm和30–50nm。基于单颗粒追踪和非对称流场分离技术,聚合物胶束和聚合物泡囊在玻璃体中可扩散且稳定存在。在Alamar Blue测定中,这些材料在人工培养的人脐静脉内皮细胞中均未显示细胞毒性,使用体内荧光光度法评估玻璃体内纳米载体在兔体内的药代动力学,聚合物泡囊(100nm)和胶束(30nm)的半衰期分别为11.4-32.7天和4.3-9.5天,聚合物泡囊和聚合物胶束的玻璃体内清除值分别为1.7–8.7µL/h和3.6–5.4µL/h。颗粒在兔玻璃体中的表观体积分布对于聚合物胶束为0.6-1.3ml,对于聚合物泡囊为1.9-3.4ml。给药至少92天后仍可在玻璃体中发现聚合物泡囊,此外,眼底成像显示,聚合物泡囊聚集在视神经附近,并且在注射后111天仍然存留在那里。因此聚合物泡囊用于后眼部进行可控和特定位点的药物递送是一种十分具有发展前景的技术。
217人看过

