
- 2025-01-10 10:50:04宽禁带半导体材料
- 宽禁带半导体材料,如碳化硅(SiC)和氮化镓(GaN),相较于传统硅材料,具有更高的禁带宽度、更大的击穿电场强度、更高的热导率等特性。这些特性使得宽禁带半导体器件能在更高频率、更高功率密度、更高温度下工作,从而提升能效、减小体积。宽禁带半导体材料在电动汽车、智能电网、高速通信等领域展现出巨大应用潜力。
资源:14791个 浏览:13次展开
宽禁带半导体材料相关内容
宽禁带半导体材料资讯
宽禁带半导体材料文章
-
- 深度专访 | 华中科技大学冯哲川教授:科研使命与国家梦想的结合
- 近期, 北京卓立汉光仪器有限公司董磊副总经理携团队前往华中科技大学采访冯哲川教授。冯教授分享了他对科研成果产业化的独到见解以及科技前沿的无限可能。
宽禁带半导体材料产品
产品名称
所在地
价格
供应商
咨询
- 宽禁带材料测试仪器仪表
- 国内 湖北
- ¥1000
-
武汉普赛斯仪表有限公司
售全国
- 我要询价 联系方式
- 半导体深紫外宽禁带荧光测试系统:OminFluo990-DUV
- 国内 北京
- 面议
-
北京卓立汉光仪器有限公司
售全国
- 我要询价 联系方式
- 宽禁带半导体静态参数测试系统
- 国内 湖北
- ¥1000
-
武汉普赛斯仪表有限公司
售全国
- 我要询价 联系方式
- 宽禁带器件测试高电流大电压源
- 国内 湖北
- ¥1000
-
武汉普赛斯仪表有限公司
售全国
- 我要询价 联系方式
- 材料/半导体/多晶硅专用特氟龙PFA材质试剂瓶/洗瓶500ml
- 国内 江苏
- ¥260
-
南京瑞尼克科技开发有限公司销售部
售全国
- 我要询价 联系方式
宽禁带半导体材料问答
- 2021-08-20 14:16:03利用吉时利源表进行宽禁带材料测试的应用
- 材料性质的研究是当代材料科学的重要一环,,源表SMU 在当代材料科学研究中,起到举足轻重的作用,吉时利源表SMU在许多学科工程师和科学家中享有盛誉,以其优异的性能为当代材料科学研究提供多种测试方案,今天安泰测试就给大家分享一下吉时利源表在宽禁带材料测试的应用方案。一、宽禁带材料介绍:宽禁带材料是指禁带宽度大于2.3eV的半导体材料,以Ⅲ-Ⅴ族材料,SiC等最为常见。随着电子电力的发展,功率器件的使用越来越多,SiC、GaN等被广泛应用于射频与超高压等领域。此外,为适应特高压输电、电动汽车充电桩等超高压应用,可以承受更高电压的超宽禁带半导体,如碳化硅、氧化镓等的研究也在逐渐深入,宽禁带材料一直是研究方向的热点。在半导体材料的研究中,电阻率、载流子密度和迁移率是测试的关键参数。二、测试难点:1、宽禁带材料的带隙较大,击穿电场较高。超禁带材料击穿电场更高。因此需要上千伏高压源表进行测试。2、功率器件带隙较宽,稳定性好,受温度影响较小,所以也是高流器件的制备材料。电流特性的测试,需要用到几十安培的高流源表。3、四线法及霍尔效应测试均是加流测压的过程,需要设备能输出电流并且测试电压,这意味着同时需要电流源和电压表。4、电阻率及电子迁移率通常范围较大,需要电流电压范围都很大的设备。5、电流源和电压表精度要高,保证测试的准确性。三、测试方法及推荐设备:电阻率测试方法:四探针测试法测试载台:四探针测试台载流子浓度及迁移率测试方法:霍尔效应测试法测试载台:磁场设备及探针台中功率测试设备:测试设备:吉时利4200A-SCS高功率测试方案:测试设备:吉时利源表2600-PCT可选:200V/10A低压基本配置、200V/50A高流配置、3000V/10A高压配置、3000V/50A高压高流等配置四、吉时利源表方案优势:1.全面的静态/动态测试方案;1.高压3kV,高流100A高精度源表;3.SMU模块集电压源/电压表/电流源/电流表于一体,集成度高,方便使用;4.SMU均配有开尔文接口,在测试小电阻时可有效消除线缆电阻的影响;5.4200A设备电流输出精度40fA;电流测试精度10fA;电压测试精度80uV;6.带有pulse工作模式,使用pulse测试可以消除自加热效应:7.开放设备底层指令,附带编译软件,支持自编程;8.提供高压高流测试夹具,保证测试安全。泰克吉时利产品提供各类材料电参数测试方案,在高校和研究所的相关实验室内几乎都能看到,如需了解吉时利源表更多应用方案,欢迎访问安泰测试网。
313人看过
- 2023-07-25 10:40:14半导体和钙钛矿材料的高光谱(显微)成像
- 目前在光伏业界,正在进行一项重大努力,以提高光伏和发光应用中所用半导体的效率并降低相关成本。这就需要探索和开发新的制造和合成方法,以获得更均匀、缺陷更少的材料。无论是电致还是光致发光,都是实现这一目标的重要工具。通过发光可以深入了解薄膜内部发生的重组过程, 而无需通过对完整器件的多层电荷提取来解决复杂问题。HERA高光谱照相机是绘制半导体光谱成像的理想设备,因为它能够快速、定量地绘制半导体发射光谱图,且具有高空间分辨率和高光谱分辨率的特性。硅太阳能电池的电致发光光谱成像光伏设备中的缺陷会导致光伏产生的载流子发生重组,阻碍其提取并降低电池效率。电致发光光谱成像可以揭示这些有害缺陷的位置和性质。"反向"驱动太阳能电池(即施加电流)会产生电致发光,因为载流子在电极上被注入并在有源层中重新结合。在理想的电池中,所有载流子都会发生带间重组,这在硅中会产生1100 nm附近的光(效率非常低)。然而,晶体结构中的缺陷会产生其他不利的重组途径。虽然这些过程通常被称为"非辐射"重组,但偶尔也会产生光子,其能量通常低于带间发射。捕获这些非常罕见的光子可以了解缺陷的能量和分布。在本实验中,我们使用了HERA SWIR (900-1700 nm),它非常适合测量硅发光衰减。测量装置如图1所示:HERA安装在三脚架上,在太阳能电池上方,连接到一个10A的电源。640×512像素的传感器安装在样品上方75厘米处,空间分辨率约为250微米。图1. 实验装置最重要的是,HERA光学系统没有输入狭缝,因此光通量非常高,是测量极微弱光发射的理想选择。图2.A和2.B显示了两个波长的电致发光(EL)图像:1150 nm(带间发射)和1600 nm(缺陷发射),这是4次扫描的平均值(总采集时间:5分钟)。通过分析这些图像,我们可以看到,尽管缺陷区域的亮度远低于主发射区域,但它们仍被清晰地分辨出来。此外,具有强缺陷发射的区域的带间发射相对较弱。我们可以注意到有几个区域在两个波长下都是很暗的;这可能是由于样品在运输过程中损坏了电池造成的。图2.C中以对数标尺显示了小方块感兴趣区域(图2A和2B中所示)的光谱。图 2.A 和 B:两个选定波长(1150 nm 和 1600 nm)的电致发光(EL)图像。C:A和B中三个不同区域对应的电致发光光谱(图像中的彩色方框)。金属卤化物钙钛矿薄膜的光致发光显微研究通过旋涂等技术含量低、成本效益高的方法,可以制造出非常高效的太阳能电池和LED。这些方法面临的一个挑战是在微观长度的尺度上保持均匀的成分。光致发光显微镜是表征这种不均匀性的一个特别强大的工具。HERA高光谱相机可以连接到任何显微镜(正置或倒置)的c-mount相机端口,并直接开始采集高光谱数据,无需任何校准程序。图3. 与尼康LV100直立显微镜连接的HERA VIS-NIR。在本实验中,我们使用HERA VIS-NIR(400-1000 nm)耦合到尼康LV100直立显微镜(图3)来表征两种卤化物前驱体合金的带隙分布。将两种卤化物前驱体合金化的优点是能够调整材料的带隙;然而,这两种成分经常会发生逆混合,从而导致性能损失。本实验的目的是检测这种逆混合现象:事实上,混合比的局部变化会改变局部带隙,从而导致发射不同能量的光子。在这种配置中,激发光来自汞灯,通过带通滤光片在350 nm处进行滤光,并通过发射路径上的二向色镜将其从相机中滤除。HERA的高通量使其能够在大约1分钟的测量时间内收集完整的数据立方体(130万个光谱)。图4.样品的光谱综合强度图(A:全尺寸;B:放大)。图4.A和4.B分别显示了所有波长(400-1000 nm)总集成信号的全尺寸和放大图像,揭示了长度尺度在1 µm左右的明亮特征。当我们比较亮区和暗区的光谱时(图5.B中的黑色和红色曲线),我们发现暗区实际上也有发射, 不仅强度较低,而且波长中心比亮区短。事实上,光谱具有双峰形状,很可能与逆混合前驱体的发射相对应。图5.A的发射图清楚地显示了带隙的这种变化。我们现在可以理解为什么低带隙区域看起来更亮了--载流子可能从高带隙区域弛豫到那里,并且在发生辐射重组之前无法返回。图5.A:显示平均发射波长的强度图。B:亮区和暗区的发射光谱(正常化)。东隆科技作为NIREOS国内总代理公司,在技术、服务、价格上都具有优势。如果您有任何产品相关的问题,欢迎随时来电垂询,我们将为您提供专业的技术支持与产品服务。
157人看过
- 2022-10-30 16:48:50报计划指南|半导体材料表征技术推荐
134人看过
- 2025-04-02 18:00:17溶解氧测量范围宽是否好
- 溶解氧(DO)是水质监测中重要的指标之一,它反映了水体中溶解氧的含量,对水生生物的生存至关重要。对于溶解氧的测量,仪器的测量范围是影响测量准确性和广泛性的关键因素之一。溶解氧测量范围宽是否好,成为了水质监测领域中的一个重要议题。本文将探讨溶解氧测量范围宽的优缺点,分析其对测量精度、应用场景以及仪器选择的影响,旨在帮助专业人士更好地理解这一问题,并作出合适的选择。 溶解氧测量仪器通常具备一定的测量范围,不同仪器的测量范围可能会有所不同。有些仪器提供较宽的测量范围,允许在较低或较高的溶解氧浓度下进行精确测量。溶解氧测量范围的宽度到底是好是坏呢?我们需要从多个角度进行分析。 溶解氧测量范围宽的一个显著优势是它能够适应更多不同的水体环境。在一些水域,如湖泊、河流以及水产养殖场,溶解氧的浓度可能会有较大的波动。拥有宽范围测量能力的仪器可以确保在这些环境中进行准确的监测。特别是在水质污染或水温波动较大的情况下,测量范围宽的设备能够有效避免因溶解氧浓度异常变化而导致的测量误差。 测量范围宽也并非没有缺点。在某些情况下,测量范围越宽,仪器的精度可能会受到一定影响。特别是在溶解氧浓度处于仪器测量范围的极端值时,仪器的响应速度和准确度可能会降低。范围过宽的仪器往往会增加仪器的复杂性,可能需要更高的校准精度和维护成本。 在选择溶解氧测量仪器时,我们不能单纯地看仪器的测量范围。根据不同应用场景的需求,选择合适的测量范围,才是关键。例如,在一些对溶解氧要求非常严格的科研实验中,可能需要选择高精度、窄范围的测量仪器;而在一些大范围水质监测中,选择测量范围宽的仪器可能更为合适。 溶解氧测量范围宽是否好,取决于具体应用的需求与仪器的精度要求。宽范围仪器在多变的水质环境中展现了其独特优势,但也需要在精度、响应速度及维护成本等方面进行综合考虑。终,选择合适的仪器和测量范围,才能确保水质监测的科学性与准确性。
14人看过
- 2025-04-11 16:45:16冲击台脉宽怎么调
- 冲击台脉宽怎么调 在高频电子技术领域,冲击台脉宽(pulse width)是影响电路性能的一个重要参数。调整脉宽能够优化信号的响应时间与功率输出,尤其在通信系统、雷达系统和信号处理设备中扮演着至关重要的角色。本文将详细探讨如何有效调整冲击台的脉宽,以确保设备的稳定性和性能大化。了解脉宽调节的基本原理与技巧,不仅有助于提升设备的工作效率,还能避免潜在的系统错误和硬件损坏。 了解冲击台脉宽的基本概念 脉宽是指在一个周期内,信号从低点到高点的持续时间。对于冲击台来说,脉宽的调整直接关系到信号的持续时间和设备的功耗。脉宽过长会导致能量浪费,而脉宽过短则可能影响信号的有效传输。在很多应用场景中,尤其是在雷达和通信系统中,精确控制脉宽对于信号的清晰度和接收距离至关重要。 如何调整冲击台脉宽 选择合适的频率范围 调整脉宽的步是确保信号频率适配您的系统需求。频率和脉宽通常是相互关联的。较高的频率通常需要较短的脉宽,而较低的频率则可能需要较长的脉宽。因此,选择合适的频率范围是优化脉宽设置的基础。 使用脉冲发生器 脉冲发生器是调整冲击台脉宽的关键工具。它能够精确生成不同脉宽的电信号。通过脉冲发生器,您可以对脉宽进行实时调节,以适应具体的应用需求。调节时,需要根据测试需求和设备的响应时间调整参数,确保信号输出不会出现过度失真或反应迟缓的情况。 调整脉宽与功率的平衡 在调整脉宽时,还需考虑到功率的影响。脉宽越长,设备所消耗的功率也越大,因此,优化脉宽时必须与功率的要求相平衡。过大的脉宽会导致系统负载过重,影响整体性能。通常,选择较小的脉宽可以有效减少系统的功耗,并提高系统的响应速度。 实际测试与调优 调整脉宽不仅仅依赖于理论分析,更多的是通过实际测试来找出佳设置。每个系统在不同的工作环境下,其脉宽的需求会有所不同。使用示波器和频谱分析仪等测试工具,实时监控信号的波形和频谱,确保脉宽调整后的信号输出符合设计要求,并且没有引起信号失真或噪声干扰。 调整脉宽的注意事项 在实际应用中,调整脉宽时需注意以下几点: 系统稳定性:脉宽的过度调整可能导致设备的频繁重启或系统崩溃,必须在系统运行稳定的情况下逐步调整脉宽。 信号干扰:不恰当的脉宽设置可能引起信号的相互干扰,特别是在复杂的信号环境下,干扰可能会严重影响系统性能。 环境因素:在不同的温度、湿度和电磁环境下,设备对脉宽的敏感度也有所不同,调整时需要充分考虑外部环境的影响。 结论 冲击台脉宽的调节是优化电子设备性能的关键环节之一。通过精确调节脉宽,可以实现信号传输的优效果,提升系统的整体效率和稳定性。掌握脉宽调节的技术不仅有助于提升设备性能,还能够减少不必要的能源消耗,避免因脉宽设置不当而导致的系统故障。因此,了解脉宽调节的基本原理、实际操作步骤和注意事项,对任何从事高频电子技术工作的专业人员来说,都是至关重要的。
6人看过