- 2025-03-17 17:00:09光学与激光应用
- 光学与激光应用是一个广泛的领域,涉及光学技术和激光技术的多种应用。它涵盖光学仪器、光学测量、光学通信、光学信息处理等方面,以及激光加工、激光医疗、激光显示等激光技术的广泛应用。这些技术和应用在科研、工业、医疗、通信等多个领域发挥着重要作用,推动了科技的进步和社会的发展。光学与激光应用的发展也促进了相关产业的兴起和繁荣。
资源:20001个 浏览:82次展开
光学与激光应用相关内容
光学与激光应用资讯
-
- 预算51.5万元 北京师范大学 采购信息光学与激光应用系列实验系统
- 北京师范大学信息光学与激光应用系列实验系统采购项目 招标项目的潜在投标人应在北京市朝阳区南磨房路37号华腾北搪商务大厦11层1109室获取招标文件,并于2025年04月07日 09点00分(北京时间)
光学与激光应用产品
产品名称
所在地
价格
供应商
咨询

- 高功率激光光学快门
- 国内 上海
- 面议
-
上海昊量光电设备有限公司
售全国
- 我要询价 联系方式

- 高加速度无刷电机 --适用于光学定位应用
- 国内 上海
- 面议
-
筱晓(上海)光子技术有限公司
售全国
- 我要询价 联系方式

- 耐碱性实验装置/应用与介绍
- 国内 山东
- 面议
-
济南三泉中石实验仪器有限公司
售全国
- 我要询价 联系方式

- 暗箱式紫外分析仪|应用与介绍
- 国内 山东
- 面议
-
济南三泉中石实验仪器有限公司
售全国
- 我要询价 联系方式

- 全自动光学与视频测量 Hawk Duo CNC
- 国外 欧洲
- 面议
-
似空科学仪器(上海)有限公司
售全国
- 我要询价 联系方式
光学与激光应用问答
- 2023-05-08 14:54:013D光学轮廓仪的应用
- 3D光学轮廓仪的特点以及应用 3D光学轮廓仪常用于测定样品中被测区域的表面粗糙情况与轮廓形貌。本文以美国KLA公司提供的一款3D光学轮廓仪为例,让我们来了解一下吧。产品特点: 光学轮廓仪对各种产品,部件和材料的表面轮廓,粗糙度、波纹度、面形轮廓、表面缺陷、磨损情况、腐蚀情况、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用: 传统的机械零件由于受加工设备的限制,对精度包括平面度,粗糙度的要求常规下停留在微米量级。但随着技术发展,人们对机械零件的加工精度要求开始向纳米量级迈进,设备加工精度的提高带动检测技术的发展,传统的检测手段包括接触式和2D方式的检测方法对检测纳米量级精度的机械零件有很大的局限性。 光学轮廓仪Z初应用在光学加工行业时,其3D、高速、精密、可靠和稳定,开始引起加工人士的注意并开始应用。3D光学轮廓仪已在汽车发动机喷油嘴、半导体切割刀具、人工关节制造、量块标定等方面有大量的应用。一些特定功能如平面度、粗糙度、直线度和高度差等在机械加工检测中呈现出新的应用。 北京中海远创材料科技有限公司提供的Profilm3D光学轮廓仪让光学轮廓测量价格更为实惠,使用了目前先进的垂直扫描干涉 (VSI) 结合高极ng确度相移干涉 (PSI) 测量,以前所未见的价格使得表面形貌研究进入次纳米等级。咨询电话:18604053809
291人看过
- 2022-09-21 14:51:01布鲁克三维光学轮廓仪在光学领域应用
- 光学元件在各个领域都有广泛应用,对光学元件的表面加工精度提出越来越高的要求。如何检测光学元件的加工精度,从而用于优化加工方法,保证最终元器件的性能指标,是光学元件加工领域的关键问题之一。光学元件的加工精度包括表面质量和面型精度,这些参数会影响其对光信号的传播,进而影响最终器件的性能。此外,各种新型光学元件也需要检测其表面轮廓,比如非球面,衍射光学元件,微透镜阵列等。除了最终光学元件的加工精度以外,各种光学元件加工工艺也需要检测中间过程的三维形貌以保证最终产品的精度,包括注塑、模压的模具,光学图案转印时的掩膜版,刻蚀过程的图案深度、宽度等。 布鲁克的三维光学显微镜配备双光源技术,同时实现白光干涉和相移干涉成像,适用于各种不同光学样品、模具的三维形貌测量。在光学加工领域得到广泛应用。· 设备可以用于光学元件表面质量检测,可以通过表面粗糙度、表面斜率分布等判断光学元件整体散射率,也可以统计局部的各种缺陷。· 设备还可以用于各种光学元件的面型分析,除了手动分析以外,软件还提供了包括Zernike多项式拟合、非球面分析等功能。· 由于该设备能准确测量和分析光学元件,在多种先进光学元件中得到广泛应用,包括光栅、菲涅尔透镜和二元光学元件等衍射光学元件,以及微透镜阵列等。bruker三维光学轮廓仪在尔迪仪器有售,如有需要可联系上海尔迪仪器科技有限公司!拨打电话021-61552797!021-61552797!
285人看过
- 2023-05-26 11:43:55全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快光学实验必备!
- 全共线多功能超快光谱仪BIGFOOTMONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:若您对设备有任何问题,欢迎扫码咨询!高精度激光扫描显微镜NESSIEMONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。图2. 高精度激光扫描显微镜NESSIE高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷若您对设备有任何问题,欢迎扫码咨询!BIGFOOT+NESSIE应用案例:01高精度激光扫描显微镜用于材料表征美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4. (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022).02二维材料中激子相互作用和耦合的成像研究过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022)03掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制:(i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。美国德克萨斯大学奥斯汀分校李晓勤教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学研究对于理解导致其形成的配对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)若您对设备有任何问题,欢迎扫码咨询!
199人看过
- 2023-03-16 09:51:03光学柱面镜在强激光系统和同步辐射光束线中有着广泛的应用
- 柱面镜是非球面透镜,可以有效减小球差和色差。分为平凸柱面透镜、平凹柱面透镜、双凸柱面透镜、双凹柱面、弯月柱面镜、柱交柱面镜和异形类柱面透镜。具有一维放大功能。平凸柱面透镜会将入射光线聚焦到线上,焦距为正,由一个平面和一个凸柱面组成,常用于将平行或发散光束聚集到线上或改变像的宽高比。平凹柱面透镜由一个平面一个凹柱面组成,其焦距为负,常用于将平行或发散光束聚集到线上或改变像的宽高比。一粟光电提供不镀膜、镀增透膜的柱面镜片。 增透膜选项包括UV、VIS、NIR、及SWIR。 锗、硅或硒化锌基片适合用于红外应用,熔融石英则适合用于紫外应用。柱面镜主要应用于改变成像尺寸大小的设计要求。例如把一个点光斑转换成一条线斑,或者在不改变像宽度的情况下改变像的高度。可应用在线性探测器照明,条形码扫描,全息照明,光信息处理,计算机,激光发射。光学柱面镜在强激光系统和同步辐射光束线中也有着广泛的应用,同时,对柱面镜零件的要求也越来越高,尤其在大功率激光谐振腔的腔片和长距离线干涉仪等高精度测试仪器和装置中。
183人看过
- 2025-02-01 18:10:13光学金相显微镜型号区别
- 光学金相显微镜作为金属材料研究和分析中的重要工具,不同型号的光学金相显微镜在性能、配置和适用领域上存在显著差异。在本文中,我们将详细探讨市面上常见的光学金相显微镜型号,分析它们之间的区别,以及如何根据实际需求选择适合的型号。通过对比不同型号的特点和功能,帮助科研人员、工程技术人员及相关领域的从业人员更好地理解每种显微镜的优势与局限,从而做出科学合理的选购决策。 光学金相显微镜主要用于观察金属样品的显微结构,包括晶粒大小、组织形态及缺陷等,通过光学成像技术对样本进行放大分析。不同型号的显微镜在镜头配置、光源选择、放大倍数、图像处理能力等方面有所不同,适应的工作环境和研究需求也有所差异。 基础型光学金相显微镜通常采用普通光源和标准物镜,适合对大多数金属材料进行基本的显微观察。这类显微镜的放大倍率较低,适用于初步的材料研究和常规检测。在一些高精度要求的研究中,如需要分析纳米级别的细节,用户可能需要选择更高端的型号。 中高端型号的光学金相显微镜则配备了高亮度的LED光源或氙灯,能够提供更强的照明效果,帮助研究人员在高倍放大下获得更清晰的图像。这些型号往往还配有图像分析软件,能够对显微图像进行自动化处理、统计分析,提升了操作的便捷性与精度。 对于高精度、特殊研究要求的显微镜,如电子显微镜或扫描电镜,其配件和附件也更为复杂,除了更高的放大倍率,还可能包括更多的光源选择、反射光观察系统以及精密的样品台调节系统。这类显微镜的应用范围主要集中在对金属材料微观结构、晶体缺陷等进行深度分析。 光学金相显微镜的型号选择不仅仅是依据显微镜的外形或价格,还要根据具体的使用需求、样品类型及实验要求来决定。了解各型号之间的差异及其性能特点,能够确保研究和分析过程的高效性与准确性,避免盲目选择和不必要的成本浪费。通过合理的型号选择,科研人员可以大限度地提高实验效果,获得更加精确的分析结果。
184人看过


