- 2025-12-12 17:36:47锁相放大器
- 锁相放大器是一种精密测量仪器,主要用于检测微弱信号。它通过相敏检波技术,仅对与参考信号同频或倍频的信号进行放大,有效抑制噪声干扰。该仪器具有高灵敏度、高分辨率和动态范围大等特点,广泛应用于物理、化学、生物医学等领域的微弱信号检测。其工作原理基于相位锁定和信号放大,能够准确提取并测量微小信号,是科研实验和工业生产中不可或缺的工具。更多详细信息,请访问仪器网(www.yiqi.com)查阅。
资源:1295个 浏览:71次展开
锁相放大器相关内容
锁相放大器资讯
-
- Moku:Go 千元级的锁相放大器来了!
- 锁相放大器是Moku平台上蕞受欢迎仪器功能之一,Liquid Instruments基于FPGA的平台的优势,将这一仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。
-
- 如何“听见”光的声音?锁相放大器在光声光谱中的应用(文末有福利)
- 科学家们基于光声效应发展出了一种新的光谱分析技术——光声光谱,可用于检测样品的物质及其光谱学热学性质,成为了无机和有机化合物﹑半导体﹑金属﹑高分子材料等方面物理化学研究的有力手段。
-
- “去伪存真”,锁相放大器在量子精密测量系统中的应用
- 锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。
锁相放大器文章
-
- 锁相放大器的工作原理及信号分析
- 锁相放大器(Phase-Locked Amplifier)是一种用于精确测量和分析信号的设备,广泛应用于信号处理、通信和科学实验中,其基本原理是通过锁相技术来提取信号的幅度和相位信息
锁相放大器产品
产品名称
所在地
价格
供应商
咨询

- Moku :Pro锁相放大器
- 国外 大洋洲
- 面议
-
上海昊量光电设备有限公司
售全国
- 我要询价 联系方式

- Moku:Lab锁相放大器
- 国外 大洋洲
- 面议
-
上海昊量光电设备有限公司
售全国
- 我要询价 联系方式

- 锁相放大器
- 国内 上海
- 面议
-
上海波铭科学仪器有限公司
售全国
- 我要询价 联系方式

- 锁相放大器
- 国外 美洲
- 面议
-
上海屹持光电技术有限公司
售全国
- 我要询价 联系方式

- SR844锁相放大器
- 国外 美洲
- 面议
-
上海昊量光电设备有限公司
售全国
- 我要询价 联系方式
锁相放大器问答
- 2022-11-28 20:26:25SR850锁相放大器代理商-西安安泰测试Agitek
- 概述SR850 是一款基于创新 DSP(数字信号处理)架构的数字锁定放大器。相比,SR850 拥有许多显着的性能优势——更高的动态储备、更低的漂移、更低的失真和显着更高的相位分辨率。信号通道电压输入单端或差分灵敏度2nV 至 1V电流输入10 6或 10 8 V/A输入阻抗电压输入10 MΩ + 25 pF,交流或直流耦合电流输入1 kΩ 到虚拟接地获得准确度±1 % (±0.2 % 典型值)噪音1 kHz 时为6 nV/√Hz 1 kHz 时为 0.13 pA/√Hz (10 6 V/A)100 Hz 时为 0.013 pA/√Hz (10 8 V/A)线路过滤器50/60 赫兹和 100/120 赫兹 (Q=5)CMRR10 kHz 时为 100 dB。在 10 kHz 以上降低 6 dB/oct动态储备>100 dB(无前置滤波器)参考频道频率范围0.001 Hz 至 102.4 kHz参考输入TTL 或正弦波(最小 400 mVpp)输入阻抗1 兆欧,25 pF相位分辨率0.001°绝对相位误差
154人看过
- 2023-06-05 16:41:32锁相放大器用于生物样品双通道和多仪器模式SRS显微技术的研究
- 锁相放大器用于生物样品双通道和多仪器模式SRS显微技术的研究一.简介 拉曼散射光谱为生物分子的特异性检测和分析提供了化学键的固有振动指纹。那么什么是受激拉曼散射显微镜?受激拉曼散射(SRS)显微技术是一种相对较新的显微技术,是一种相干拉曼散射过程,允许使用光谱和空间信息进行化学成像[18],由于相干受激发射过程[1]能产生约103-105倍的增强拉曼信号,可以实现高达视频速率(约25帧/s)[2]的高速成像。SRS显微镜继承了自发拉曼光谱的优点, 是一种能够快速开发、label-free的成像技术,同时具有高灵敏度和化学特异性[3-6], 在许多生物医学研究的分支显示出应用潜力,包括细胞生物学、脂质代谢、微生物学、肿瘤检测、蛋白质错误折叠和制药[7-11]。特别的是,SRS在对新鲜手术组织和术中诊断的快速组织病理学方面表现出色,与传统的H&E染色几乎完全一致[12,13]。此外,SRS能够根据每个物种的光谱信息,对多种组分的混合物进行定量化学分析[6,7,14]。尽管在之前的研究[17]中已经研究了痛风中MSU的自发拉曼光谱,但微弱的信号强度阻碍了其用于快速组织学的应用。因此,复旦大学附属华山医院华英汇教授 和复旦大学物理学系季敏标教授团队将受激拉曼散射显微技术用于人体痛风组织病理成像[15]。研究人员应用SRS和二次谐波(SHG)显微镜同时表征了晶型和非晶型MSU。在普通光镜下,MSU晶体呈典型的针状。这些晶体在拉曼峰630 cm-1的SRS上很容易成像,当SRS频率稍微偏离振动共振时,表现出了高化学特异性的非共振行为,SRS信号消失。已知SHG对非中心对称结构敏感,包括MSU晶体和[17]组织中的胶原纤维。然而,由于拉曼极化率张量和二阶光学磁化率对晶体对称性[16]的依赖,研究者们发现线偏振光光束在晶体取向上倾向于产生SRS和SHG的强各向异性信号。因此,研究者们对泵浦光束和斯托克斯光束都应用了圆偏振,以消除MSU晶体和胶原纤维的定向效应。Moku:Pro 的锁相放大器 (LIA) 为受激拉曼散射 (SRS) 显微镜实验中的自外差信号检测提供了一种直观、精确且稳健的解决方案。高质量的 LIA 是 SRS 显微镜实验中具有调制传输检测方案的关键硬件组件。在此更新的案例研究中,我们提供了有关双 LIA 应用程序的更多详细信息和描述。由于SRS 是一种相干拉曼散射过程,允许使用光谱和空间信息进行化学成像[18]。它使用两个同步脉冲激光器,即泵浦和斯托克斯(图 1)相干地激发分子的振动。当入射到样品上的两束激光的频率差与目标分子的振动频率相匹配时,就会发生 SRS 过程。振动激发的结果是泵浦光束将失去光子,而斯托克斯光束将获得光子。当检测到泵浦光束的损失时,这称为受激拉曼损失 (SRL) 检测。强度损失 ΔIₚ/Iₚ 通常约为 10 -7 -10 -4,远小于典型的激光强度波动。为了克服这一挑战,需要一种高频调制和相敏检测方案来从嘈杂的背景中提取 SRS 信号[19]。在 SRL 检测方案中,斯托克斯光束以固定频率调制,由此产生的调制传输到泵浦光束由 LIA 检测。图 1:受激拉曼损耗检测方案。检测到由于 SRS 引起的 Stokes 到泵浦光束的调幅传输。演示的泵浦光束具有 80 MHz 的重复率,Stokes 光束具有相同的 80 MHz 重复率,但也以 20 MHz 进行调制。Δpump 是 LIA 在此检测方案中提取的内容二.实验装置使用的激光系统能够输出两个 80 MHz 的激光脉冲序列:斯托克斯光束在 1030 nm,泵浦光束在 790 nm。激光输出也用于同步调制:80 MHz 参考被发送到分频器以生成 20 MHz TTL 输出。这些 20 MHz 输出被使用两次:一次作为电光调制器调制斯托克斯光束的驱动频率,另一次作为外部锁相环的 LIA 输入通道 2(B 中)的参考。泵浦光束由硅光电二极管检测,然后被发送到 LIA 的输入通道 1(In A)。来自输出通道 1(Out A)的信号被发送到数据采集卡以进行图像采集。来自输出通道 2 (Out B) 的信号被最小化(通过调整相移)。 2.1 单通道锁相放大器配置图 2:典型的锁定放大器配置设置图 2 演示了用于 SRS 显微镜实验的 LIA 的初始设置。在初始设置时,必须重新获取锁相环。输入均配置为 AC:50 欧姆。通过调整相位度数优化相移 (Df),直到 Out A zui大化(正值)并且 Out B zui小化(接近零)。探针A显示对应于 DMSO zui高信号峰 (2913 cm-1 ) 的 SRS 信号,并zui大化输出 A 的 103.3 mV。探针B表示正交输出,最小化为零。一旦 LIA 针对校准溶剂进行了优化,样品就可以进行成像了。图 3:2930 cm -1拉曼跃迁处的 SRS HeLa 细胞图像图 3 是使用 Moku:Pro 锁相放大器拍摄的 HeLa 细胞图像。显示的图像是从 SRS 图像生成的,拉曼位移为 2930cm-1,对应于蛋白质峰。低通滤波器设置为 40 kHz,对应于 约4µs 的时间常数。可以根据SRS信号大小增加或减少增益。2.2 双通道成像Moku:Pro 的 LIA 也适用于实时双色 SRS 成像。这是通过在 SRS 成像中应用正交调制并检测LIA的X和Y输出来执行的。在这种情况下,斯托克斯调制有两个部分:一个 20 MHz 脉冲序列生成SRS信号,另一个 20 MHz 脉冲序列具有90°相移,生成另一个针对不同拉曼波段的SRS信号[3]。由于90°相移,两个通道(Out A和Out B)彼此正交,可以同时获取两个SRS图像而不会受到干扰。 4:使用正交调制和输出在两个不同的拉曼跃迁下同时获得鼠脑样本的双通道 SRS 图像图 4 是利用双通道X&Y输出同时在2930 cm -1和 2850 cm -1处生成两个 SRS 图像的代表性图像。2.3 多仪器模式应用 在大多数 SRS 显微镜实验中,由于激光器总带宽的限制,光谱范围被限制在大约 300 cm -1左右。绕过这一技术障碍的一种方法是使用可调谐激光器扫描波长。然而,波长调谐速度很慢,而且对于时间敏感的实验(如活细胞成像)来说往往不够。应对这一挑战的另一种解决方案是引入第三束激光束来扫描不同的拉曼过渡区域。这种能力对于两个光谱区域的同时成像特别有吸引力:一个在指纹区域(例如 约1600 cm-1用于酰胺振动)和一个在CH区域(例如 约2900 cm -1蛋白质)。在 SRL 成像方法中,实验装置由一个斯托克斯光束和两个不同波长的泵浦光束组成。此设置的常用检测方法需要单独的检测器和单独的 LIA。然而,Moku:Pro 的多仪器模式允许部署多个LIA,因此可以在不需要任何额外硬件妥协的情况下实施第二个LIA。图 5:Moku:Pro 多仪器锁相放大器配置图 5 演示了LIA 的多仪器模式设置,用于同步 SRS 显微镜实验。对于Slot 1,In 1是di一个光电二极管的检测信号,In 2是参考信号,Out 1是发送到数据采集卡的信号,Out 3被丢弃。对于 Slot 2,In 3 是第二个光电二极管的检测信号,In 2 再次作为参考,Out 2 是发送到数据采集卡的信号,Out 4 被丢弃。此配置仅使用 4 个 Moku 插槽中的 2 个。插槽 3 和 4 未分配,因此可用于进一步的 LIA 或任何其他 Moku 仪器。输入全部配置为 AC:50 欧姆。每个 LIA 插槽(1 和 2)都遵循与单通道 LIA 配置相同的设置。在三个激光器的情况下,Moku:Pro 的多仪器模式可以配置两个锁定放大器,将系统简化为一个设备,而不会有任何妥协。这使得研究人员可以同时拍摄两张波数差较大的 SRS 图像,利用一个 Moku:Pro 来处理两个光电二极管检测器信号。图 6:HeLa 细胞 SRS 图像使用多仪器设置在间隔较远的拉曼跃迁处拍摄图 6 是利用一个Moku:Pro处理两个光电二极管检测器信号同时拍摄两个大波数差的 SRS 图像的代表性图像。三.结论 Moku:Pro 的 LIA 为大量 SRS 显微镜实验提供了出色的解决方案。在本文档中,讨论了典型的单通道 SRS 成像、双通道成像和多仪器成像。用户界面允许对提取低强度 SRS 信号进行直观和强大的控制。重要的是 Moku:Pro 的多仪器工具功能允许在多仪器同用的紧凑型系统上进行复杂的成像实验。图 7:Moku:Pro 在多乐器模式下的使用图像。In 1 和 In 3 分别是插槽 1 和插槽 2 中 LIA 的信号输入。2 中是两个 LIA 插槽的参考。在所示的配置中,Out 1 和 Out 3 是记录的信号,Out 2 和 Out 4 是插槽 1 和 2 的转储信号参考文献:1.Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 2008;322:1857-612.Saar BG, Freudiger CW, Reichman J, Stanley CM, Holtom GR, Xie XS. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science. 2010;330:1368-703.Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M, Venneti S. et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Transl Med. 2015;7:309ra1634.Ji M, Arbel M, Zhang L, Freudiger CW, Hou SS, Lin D. et al. Label-free imaging of amyloid plaques in Alzheimer''s disease with stimulated Raman scattering microscopy. Sci Adv. 2018;4:eaat77155.Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science. 2015;350:aaa88706.Ao JP, Feng YQ, Wu SM, Wang T, Ling JW, Zhang LW. et al. Rapid, 3D Chemical Profiling of Individual Atmospheric Aerosols with Stimulated Raman Scattering Microscopy. Small Methods. 2020;4:19006007.Hu F, Shi L, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat Methods. 2019;16:830-428.Fu D, Zhou J, Zhu WS, Manley PW, Wang YK, Hood T. et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem. 2014;6:614-229.Shen Y, Zhao Z, Zhang L, Shi L, Shahriar S, Chan RB. et al. Metabolic activity induces membrane phase separation in endoplasmic reticulum. Proc Natl Acad Sci U S A. 2017;114:13394-910.Bae K, Zheng W, Ma Y, Huang Z. Real-time monitoring of pharmacokinetics of antibiotics in biofilms with Raman-tagged hyperspectral stimulated Raman scattering microscopy. Theranostics. 2019;9:1348-5711.Shin KS, Laohajaratsang M, Men S, Figueroa B, Dintzis SM, Fu D. Quantitative chemical imaging of breast calcifications in association with neoplastic processes. Theranostics. 2020;10:5865-7812.Ji M, Orringer DA, Freudiger CW, Ramkissoon S, Liu X, Lau D. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med. 2013;5:201ra11913.Orringer DA, Pandian B, Niknafs YS, Hollon TC, Boyle J, Lewis S. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng. 2017;1:002714.He R, Liu Z, Xu Y, Huang W, Ma H, Ji M. Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line. Opt Lett. 2017;42:659-6215.Li B, Singer NG, Yeni YN, Haggins DG, Barnboym E, Oravec D. et al. A point-of-care Raman spectroscopy-based device for the diagnosis of gout and peudogout: comparison with the clinical standard microscopy. Arthritis Rheum. 2016;68:1751-716.Zhang B, Xu H, Chen J, Zhu X, Xue Y, Yang Y, Ao J, Hua Y, Ji M. Highly specific and label-free histological identification of microcrystals in fresh human gout tissues with stimulated Raman scattering. Theranostics 2021; 11(7):3074-308817.Streets AM, Li A, Chen T, Huang Y. Imaging without fluorescence: nonlinear optical microscopy for quantitative cellular imaging. Anal Chem. 2014;86:8506-1318.Freudiger, W.; Min, W.; Saar, B. G.; Lu, S.; Holtom, G. R.; He, C.; Tsai, J. C.; Kang, J. X.; Xie, X. S., Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science 2008, 322 (5909), 1857-1861.19.Hill, H.; Fu, D., Cellular Imaging Using Stimulated Raman Scattering Microscopy. Anal. Chem. 2019, 91 (15), 9333-9342.20.Figueroa, ; Hu, R.; Rayner, S. G.; Zheng, Y.; Fu, D., Real-Time Microscale Temperature Imaging by Stimulated Raman Scattering. The Journal of Physical Chemistry Letters 2020, 11 (17), 7083-7089.更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
172人看过
- 2022-03-23 15:08:46【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
- 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments蕞新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
303人看过
- 2021-12-29 14:20:30【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
- 昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.扫码联系下方产品负责人,转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式扫码报名报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!如有产品问题咨询,可联系许工131 2213 4000(微信同号)
415人看过
- 2019-08-19 17:21:45HF2LI双通道数字锁相放大器用于受激拉曼散射显微成像
- 相干拉曼散射显微术(Coherent Raman Scattering Microscopy)是一类植根于拉曼散射的光学显微成像方法,主要包含相干反斯托克斯拉曼散射(Coherent Anti-StokesRaman Scattering, CARS)和受激拉曼散射(Stimulated Raman Scattering, SRS)两种方法。CARS/SRS 显微术通过探测目标分子特定的振动来提供成像所需的衬度,通过非线性光学过程大大提高了检测的灵敏度,同时本征地具备三维成像能力。CARS 和 SRS 显微术可以对脂类等不易被标记的物质成像,还可以很好地通过选择振动光谱, 对生物体内特定小分子物质如药物等以及生物大分子如核酸、蛋白质等进行无需标记的成像,因此成为极有潜力的活体(in vivo)成像手段。拉曼散射是发生在光和分子振动能级间的相互作用。在不满足电子能级共振条件的情况下,分子吸收光子的能量不能完成向电子激发态的跃迁,但是可以到达一个中间态,即虚态。处在虚态的分子会迅速向低能态跃迁,同时发射出一个光子,这就是散射过程,发射出的光子就是散射光。如果散射光子和原来的光子频率相同,称之为瑞利散射(Rayleigh Scattering)。如果分子从虚态向下跃迁时,到达比原来能量高的态,散射光的频率将降低,称之为斯托克斯散射(Stokes Scattering);相反,如果终态的能量比初态低,那么散射光的频率将升高,称之为反斯托克斯散射(anti-Stokes Scattering)。斯托克斯与反斯托克斯散射统称为拉曼散射(Raman Scattering)。显然,拉曼散射是光的非弹性散射。拉曼散射的截面(cross section)很小,因此自发拉曼散射的信号强度通常很低。能量在分子振动能级和光子之间发生交换,其大小对应振动能级间距,散射光的频率移动(拉曼位移)也因此与分子振动的频率相同。斯托克斯线与反斯托克斯线在光谱上则相对于入射光的频率对称分布。受激拉曼散射显微镜的工作原理自发拉曼散射是分子对光子的一种非弹性散射现象,在这个现象中,散射光子的频率较入射光子相比发生了改变,改变量对应分子内部振动模式的频率,这个现象在1928年由印度物理学家Raman C V发现的。激光出现后,在激光器的激发下,使某些介质的散射过程具有受激性质,这就是受激拉曼散射(SRS)。如下图所示,采用两束满足共振条件的激光,即泵浦光和斯托克斯光进行激发,SRS过程可在生物组织样品中发生。当泵浦光和斯托克斯光的频率差,与特定分子化学键的振动频率(Ωvib)相等而发生共振耦合时,分子就会从基态跃迁到它的振动激发态。光和分子之间发生能量交换,一个泵浦光子借助分子振动能级的跃迁而转化为了斯托克斯光子。泵浦光发生了受激拉曼损失(stimulated Raman loss, SRL),导致强度降低,同时斯托克斯光发生了受激拉曼增益(stimulated Raman gain, SRG),强度升高。通过一定的技术手段来检测SRL或SRG,即可作为成像的衬度来源。对泵浦光和探测光都进行电光调制或者声光调制,可以在同一个受激拉曼散射实验装置中,实现相干拉曼散射成像(CARS)和受激拉曼散射成像(SRS)以及通过微弱的调整可实现的双光子吸收光谱(TPA)。如下图则是采用双调制获得拉曼成像的实验装置及成像结果[1]。[1] Jessica C. Mansfield, George R. Littlejohn, Julian Moger, etc. Label-free Chemically Specific Imaging in Planta with Stimulated Raman Scattering Microscopy, Anal. Chem. 2013, 85: 5055-5063
677人看过
- 公司产品
- 技术文章
- 产品搜索
- 技术资料
- 荧光物标记法
- 溶出试验仪
- 同位素标记
- 口服固体瓶
- 注射器检测仪
- 氢气发生器注意事项
- 压力变送器厂
- 二级生物安全柜
- 氮气发生器工作原理
- 多肽合成步骤
- 实验室纯水机常见故障
- 多肽合成方法
- 多肽化学合成
- mh3200
- 微流控压电技术
- OVA偶联
- 槽式翻抛机
- 荧光标记肽
- 热收缩率测试
- 紫外烟气分析仪特点
- 保护氨基酸
- 旋转式粘度计
- 氢气发生器操作规程
- 液相合成多肽
- 材料拉力试验机注意事项
- 氢气发生器运行环境要求
- 糖基化多肽
- 压力变送器量
- 氢气发生器SPE固态电解质技术
- 生物安全柜分类
- 二硫键环肽
- 药用垫片检测
- 上海多肽定制
- 自动滴定仪
- 紫外烟气分析仪工作原理
- AKF系列卡尔费休水分测定仪





