
- 2025-01-21 09:32:41生物燃料实验
- 生物燃料实验是研究和开发生物燃料的一系列实验活动。主要内容包括生物质的预处理、转化过程(如发酵、热化学转化等)以及生物燃料的性能评估。目的是提高生物燃料的产量、质量和经济性,以满足可再生能源领域的需求。生物燃料实验对于推动能源转型、减少温室气体排放具有重要意义,是未来能源发展的重要方向之一。
资源:6413个 浏览:12次展开
生物燃料实验相关内容
生物燃料实验文章
生物燃料实验产品
产品名称
所在地
价格
供应商
咨询
- RE20 生物燃料实验套装
- 国内 香港
- 面议
-
欧美大地仪器设备中国有限公司
售全国
- 我要询价 联系方式
- 生物燃料分析仪
- 国外 欧洲
- 面议
-
孚光精仪(香港)有限公司
售全国
- 我要询价 联系方式
- 生物燃料标准物质等
- 面议
-
北京锐志汉兴科技有限公司
售全国
- 我要询价 联系方式
- 生物燃料蒸发排放测量仪——GASERA ONE SHED
- 国外 欧洲
- 面议
-
上海泽泉科技股份有限公司
售全国
- 我要询价 联系方式
- 多元素生物燃料混标(5组分)
- 国内 北京
- ¥5881
-
坛墨质检科技股份有限公司
售全国
- 我要询价 联系方式
生物燃料实验问答
- 2023-06-12 14:45:39转载 | 高温高压下,Palas®气溶胶粒径谱仪如何助力生物燃料研究
- 在生物燃料研究领域,气体净化一直是一个重要课题。在研究过程中通常需要对燃烧废料产生的原料气体进行净化并测试其净化效果,而这些气体往往处于高温高压条件,为气体的测量与分离带来重大挑战。Palas® Promo® 3000HP气溶胶粒径谱仪可在高温高压环境下进行粒径表征,提供接近实际状态的气溶胶粒径分布数据。来自德国卡尔斯鲁厄的课题研究中心在其生物燃料项目中选择了Palas® Promo® 3000HP气溶胶粒径谱仪,帮助该生物燃料研究项目获得可靠数据。卡尔斯鲁厄研究中心项目面临的挑战“在废料气化之后,我们必须对用于燃料合成物的原料气体进行净化处理。”来自卡尔斯鲁厄课题研究中心的罗伯特·迈博士说道。该项目从事生物燃料研究,从秸秆和废木材中提取燃料,整个过程中对原始燃料气体中杂质(烟尘颗粒,硫、氯化氢等)的分析和处理是燃料合成的关键环节。而由于催化剂的易燃性,保护其避免爆炸也是为研究的安全保驾护航。罗伯特·迈( Dipl.-Ing. Robert Mai)在生物燃料项目的试验工厂Promo® 3000HP可以在温度高达250 ℃或高压10 bar的条件下为该气体净化流程提供相关颗粒物浓度和颗粒物分布的测量。通常情况下废料燃烧生成燃料原始气体的条件为600 ℃和80 bar,完整实验的发生环境也至少达到200 ℃,从而避免气体的冷凝。但如此条件下无法进行气体测量,因此需要分离出冷却到200 ℃的二次流,使其在没有压力的情况下通向空气传感器。独立的外置传感器通过光纤与主机通讯,适用于易燃易爆气溶胶的监测,避免了电缆与易燃气体的接触。在研究过程中,Promo® 3000HP起到了保护易燃催化剂的作用,确保了实验环境的安全。为观测气体净化效果,需要通过净化前后的数据对比来帮助查验过滤效果。在Promo® 3000HP中,原始气体和净化后的气体被两个独立的传感器中检测,使得快速的过滤层测试成为可能。而用于测量原始气体和净化气体的两个传感器可以通过光纤连接:当传感器2070 H被用于高浓度原始气体检测,传感器2300 H被用于浓度低于10 mg/m3的净化后的气体检测。值得信赖的Palas®仪器认识到Palas®仪器了在实验室的精彩表现,我们还可以在基尔大学Christian Albrecht制药研究所看到这些仪器的实际应用。Palas® Promo®系列是一种白光 气溶胶测量系统,由于采用了数字化的单独信号处理,可以对单个粒子进行高分辨率的时间分析。久经考验的T型结构和模块化设计的优势,也使得welas®系统传感器可以利用灵活的新型散射光谱从而拥有高分辨率,确保了测量结果的高度可靠性。Palas®设备和仪器可为不同的监测环境提供可靠的数据,未来也将继续为科研与实际测量带来令您放心的服务。Promo® 3000HP气溶胶粒径谱仪Palas® Promo® 3000HP气溶胶粒径谱仪除了耐高温高压与监测易燃易爆气溶胶等可靠功能,还采用了集成电子处理器技术,可以单独进行信号分析与重合分析,并可以在浓度高达106 p/cm3的条件下可信赖地测量颗粒物浓度与颗粒物大小。同时Promo® 3000HP还提供双探头测量方案,可任意配置用于高浓度(最 高可达1x106 个/cm3)或低浓度(最 低1 个/cm3)的探头,满足不同浓度区域的测量需求。与此同时,该设备还可通过各种接口(USB, Ethernet (LAN), Wi-Fi, RS-232/485)将设备连接到过程控制系统中,实现系统集成。产品优势测量范围为 0.2 至 100 μm(在一台设备中可以选择 4 个测量范围)在一台设备中多达有四个测量范围0.2 µm – 10 µm0.3 µm – 17 µm0.6 µm – 40 µm2 µm – 100 µm (传感器 welas 2300 和 2500附加范围)每个测量范围多达 128 个尺寸通道浓度范围 1 颗粒/立方厘米至 106 颗粒/立方厘米不同折射率的校准曲线从 0.2 μm开始具有很高且可重现的计数效率光纤技术大触摸屏操作简单客户可以独立进行校准、清洁和更换灯泡通过 RS 232 或以太网进行外部控制带有PDAnalyze 分析软件可选:软件PDControl 可作为welas digital 工作软件低维护功能可靠减少您的运营费用应用领域设备排放监控控制研磨和分类过程监控食品、制药和化工行业的生产过程测试完整的过滤器、惯性和湿式分离器或静电除尘器
132人看过
- 2025-04-17 16:30:16光栅光谱仪实验如何做?
- 光栅光谱仪实验:应用与原理解析 光栅光谱仪是一种常用于分析光的组成与特性的重要仪器,它通过光栅衍射的原理,将入射光谱分解成不同波长的光,广泛应用于物理、化学、生物等多个学科领域。本文将详细探讨光栅光谱仪的工作原理、实验过程、以及其在科研与工业中的重要作用,旨在为广大科研人员及学者提供相关的实践与理论指导。 光栅光谱仪的工作原理基于光的衍射效应。光栅通常由众多平行的细线条构成,每条线条之间的间隔非常微小。当光线照射到光栅表面时,由于光的衍射效应,光线会按照一定的规律发生偏折,并在不同的角度上出现衍射光谱。根据光栅的设计,光谱中每一条光线的角度与入射光的波长成一定的关系。通过测量光线的衍射角度,可以准确推算出光的波长和频率,这一过程即为光谱分析。 在光栅光谱仪实验中,首先需要选用合适的光源,通常使用激光或其他连续光源,确保光源的波长稳定性和适合衍射光谱分析的特性。实验中,光源通过准直透镜使得光线平行,接着光线通过光栅,并在光栅的衍射作用下产生一系列光谱。实验者通过设定适当的角度位置,使用探测器或光电二极管接收不同波长的衍射光,从而分析出光谱数据。 实验的另一关键环节是光栅的选择和光学系统的调校。光栅的周期性结构和光栅常数(即光栅上条纹之间的间距)对衍射角度的精度有着至关重要的影响。为确保实验的准确性,必须选择合适的光栅,并且对仪器进行精密调节,使得光谱的测量范围和灵敏度达到佳状态。仪器的探测系统和光电元件的性能也对实验结果产生影响。 在实际应用中,光栅光谱仪被广泛用于各种科学实验中。例如,在天文学中,科学家利用光栅光谱仪分析天体发出的光谱,进而推算出天体的化学成分、温度、运动速度等信息。在化学分析中,光栅光谱仪可用于检测物质的分子特征,通过光谱线的精确测量,推断物质的浓度和纯度。光栅光谱仪还广泛应用于光通信、激光技术以及材料科学等领域。 总结来说,光栅光谱仪是一种高精度的光谱分析工具,能够通过衍射原理将光分解成不同波长的光线,广泛应用于科学研究和工业生产中。了解其工作原理和实验操作过程,对于提高实验的准确性和拓展其应用领域具有重要意义。无论是在天文学的星际物质分析,还是在化学反应监测中的定量分析,光栅光谱仪都发挥着不可替代的作用,为科研和技术创新提供了重要的支持。
14人看过
- 2025-02-01 12:10:12双目立体显微镜做什么实验
- 双目立体显微镜做什么实验 双目立体显微镜,作为一种高分辨率、立体视觉观察工具,广泛应用于多个领域的实验和研究。其通过两眼同时观察样本,能够提供更加清晰、立体的图像,帮助研究人员在细微结构上获得更精确的观察。本文将探讨双目立体显微镜在不同实验中的应用,以及它如何在科研和工业领域中发挥重要作用。我们将深入分析其在生物学、医学、电子学和材料科学等领域中的具体实验用途,以及如何通过此技术提升实验数据的可靠性和准确性。 双目立体显微镜的基本原理与功能 双目立体显微镜通过两个独立的光学路径将样本成像,通过提供立体视觉效果,使得观察者能够从不同角度更好地感知样本的深度和结构。相比传统的单目显微镜,双目显微镜的大优势在于其立体感,能够模拟人眼的自然视觉,从而提高了观察细节的能力。这种特性使其成为了进行高精度实验的理想选择。 在生物学领域的应用 在生物学实验中,双目立体显微镜常用于观察活体细胞、昆虫标本以及微生物等。其强大的放大能力和立体感,可以帮助研究人员更清晰地观察到标本的细微结构,如细胞的分裂过程、昆虫的外骨骼结构等。在生态学研究中,双目立体显微镜也常用于对小型动植物的解剖和分类工作。通过这种方式,科学家能够获得精确的图像,从而得出更为科学的结论。 在医学研究中的作用 医学领域中,双目立体显微镜广泛应用于病理学、外科手术等领域。在病理学实验中,研究人员利用这种显微镜观察组织切片、细胞变化以及癌细胞的特征,有助于病症的诊断与研究。而在外科手术中,尤其是微创手术,医生使用双目立体显微镜进行定位和手术操作,能够有效减少对周围组织的损伤,提高手术成功率。 在电子学领域的应用 电子学实验中的微小元件,如集成电路、微型传感器等,往往需要在显微镜下进行检查。双目立体显微镜在这一领域的应用非常广泛,它能够提供清晰的三维图像,帮助工程师检测电子元器件的焊接质量、线路连接以及表面缺陷等。这些高精度的观察对于确保电子产品的质量至关重要。 在材料科学中的应用 在材料科学领域,双目立体显微镜被广泛用于金属、陶瓷及其他材料的表面分析。通过显微镜观察材料表面是否存在裂纹、气孔或其他缺陷,研究人员能够预测材料在实际使用过程中的表现。双目立体显微镜还能帮助材料科学家进行材料的成分分析和微观结构研究,促进新材料的开发和应用。 总结 双目立体显微镜不仅能够提供高清晰度的图像,而且其立体视觉的优势使其成为多种实验和研究中的关键工具。从生物学到医学,再到电子学与材料科学,双目立体显微镜都发挥着重要的作用。随着技术的不断进步,双目立体显微镜的应用范围和精度将继续拓展,成为各学科领域不可或缺的研究工具。
23人看过
- 2025-02-01 09:10:17哪些实验要用荧光显微镜
- 在现代生物学和医学研究中,荧光显微镜作为一种先进的成像技术,广泛应用于各类实验中。荧光显微镜利用荧光标记物对细胞、组织或分子进行可视化,以高灵敏度和高分辨率捕捉到微小的结构变化和生物反应。本文将探讨在实验中需要使用荧光显微镜的几种典型情况,帮助科研人员了解何时选择这一技术以获得精确的结果。 荧光显微镜主要应用于细胞和分子层面的观察,尤其在细胞生物学、分子生物学和医学领域中的研究具有不可替代的作用。细胞分裂过程中的染色体行为观测是典型的应用场景。研究人员利用特定的荧光染料标记染色体或其他细胞器,在显微镜下观察到细胞周期中的不同阶段,如有丝分裂过程中的染色体排列、分离等,能帮助揭示基因突变与细胞增殖的关系。 蛋白质定位和表达水平的研究也常常依赖荧光显微镜。通过将特定蛋白质与荧光标签结合,科学家可以在活细胞中追踪蛋白质的定位及其动态变化。这对于研究细胞信号传导、蛋白质折叠、以及细胞内运输等过程尤为重要。荧光显微镜能够以极高的灵敏度探测到微量的标记物,使得研究人员能够精确地监测到细胞内复杂的生物分子相互作用。 活细胞成像是荧光显微镜在现代研究中的另一大亮点。不同于传统显微镜,荧光显微镜通过标记分子和观察其在时间和空间上的变化,能够实现对活细胞动态过程的长时间监测。这种能力使其在药物筛选、疾病机制研究以及基因功能分析中具有重要的应用价值。科学家们通过荧光标记探究细胞与外部环境的相互作用,能够揭示疾病发生的早期标志。 在免疫组织化学研究中,荧光显微镜同样扮演着重要角色。通过标记抗体,研究人员可以识别组织中的特定蛋白质表达情况。这种技术对于癌症组织的诊断及分析、病理研究以及神经科学领域的突触观察等都具有广泛的应用。特别是在多重染色实验中,荧光显微镜能够同时显示多个标记物,帮助科学家进行复杂的细胞和分子分析。 总结来说,荧光显微镜在现代科学研究中的应用十分广泛,其不仅适用于观察细胞结构、蛋白质分布及分子机制,还在活体成像、药物开发以及疾病研究等领域发挥着关键作用。通过不断优化技术和发展新的荧光标记物,荧光显微镜在未来的科研中将继续为解开生命科学的谜题提供强有力的支持。
23人看过
- 2025-03-07 13:30:13涡轮流量计特性实验怎么做?
- 涡轮流量计特性实验 涡轮流量计是工业中广泛应用于液体、气体流量测量的重要仪表,因其具有高精度、响应迅速和结构简单等优点,成为各类生产过程中的常见选择。本文将深入探讨涡轮流量计的特性及其实验方法,分析影响其性能的主要因素,帮助技术人员更好地理解和应用涡轮流量计的测量原理与应用技巧。 涡轮流量计通过利用流体流动推动涡轮转动,从而转化为与流量成正比的旋转信号。通过测量涡轮的转速,可以直接推算出流体的流量。在实际应用中,涡轮流量计的测量精度和稳定性常常会受到多种因素的影响,包括流体的粘度、流量范围、温度变化等。因此,开展涡轮流量计特性实验对于优化其性能具有重要意义。 在涡轮流量计的特性实验中,通常需要测定多个工作参数的变化对流量计性能的影响。例如,流量的变化会直接影响涡轮的转速,进而影响流量计的输出信号。因此,实验中首先需要精确控制流量范围,并记录不同流量下涡轮的转速变化。通过对比理论计算值与实验数据,能够评估流量计在不同工作条件下的准确性和稳定性。 除了流量的影响外,流体的粘度也是一个重要的影响因素。流体粘度较高时,流动阻力增大,涡轮转速下降,可能导致测量误差。为了研究粘度对涡轮流量计的影响,实验中可以通过改变流体的温度或选择不同的液体样本来模拟不同粘度条件下的流量计性能表现。实验结果表明,在较高粘度的流体中,涡轮流量计的测量精度可能会降低,因此在高粘度流体的应用中需要选择适当的流量计或进行校正。 温度也是影响涡轮流量计测量准确性的关键因素。随着温度的升高,流体的密度和粘度都会发生变化,这会对涡轮流量计的输出产生影响。在实验过程中,需要对不同温度下的流量计进行校准,确保其在宽温度范围内的稳定性。通过温度实验,技术人员能够获得涡轮流量计在温度变化中的性能曲线,进一步提高其测量的可靠性。 通过对涡轮流量计的特性实验,可以明确其工作范围和适用条件。实验数据为涡轮流量计的设计改进和使用提供了宝贵的参考。例如,在某些特殊场合,可能需要对流量计进行特殊校准或选用特定材料,以应对极端工作条件。 涡轮流量计的特性实验是其应用中的重要环节,能够有效评估流量计在不同条件下的测量精度和稳定性。通过详细的实验数据分析,可以为流量计的选型、安装和维护提供科学依据,确保其在实际工作中的高效运行和长期可靠性。
37人看过