2025-01-21 09:35:14高效低碳燃气轮机
高效低碳燃气轮机是一种先进的能源转换装置,通过燃烧燃料产生高温高压气体驱动涡轮旋转,进而带动发电机发电。其特点在于高效利用燃料能量,同时减少碳排放。通过采用先进的燃烧技术和材料,以及优化热管理,燃气轮机能够实现更高的热效率和更低的污染物排放。广泛应用于电力生产、船舶动力、工业驱动等领域,是推动能源转型和实现碳中和目标的关键技术之一。

资源:12141个    浏览:63展开

高效低碳燃气轮机相关内容

产品名称

所在地

价格

供应商

咨询

低碳铬铁成分分析标准物质
国内 上海
面议
上海安谱实验科技股份有限公司

售全国

我要询价 联系方式
低碳节能式1000L调温调湿湿热试验箱
国内 广东
面议
东莞市皓天试验设备有限公司

售全国

我要询价 联系方式
低碳铬铁
国内 北京
¥432
北京萘析生化科技有限公司

售全国

我要询价 联系方式
低场台式时域核磁共振分析仪
国内 江苏
面议
苏州纽迈分析仪器股份有限公司

售全国

我要询价 联系方式
低碳铬铁
国内 北京
¥375
坛墨质检科技股份有限公司

售全国

我要询价 联系方式
2023-04-18 10:25:01低真空下的高效光催化二氧化碳还原反应
1. 文章信息标题:High-efficiency photoreduction of CO2 in a low vacuum中文标题: 低真空下的高效光催化二氧化碳还原反应页码:15389-15396DOI:10.1039/d2cp00269h               2. 期刊信息期刊名:Physical Chemistry Chemical PhysicsISSN:1463-90842021年影响因子:3.945分区信息: 二区TOP(升级版)涉及研究方向: 物理化学、化学物理、生物物理化学 3. 作者信息:作者是 Yuxin Liu (刘钰鑫) 。通讯作者为  Shuai Kang (康帅)、Zhuofeng Hu (胡卓锋)、Wenqiang Lu (陆文强)。4.实验仪器:CEL-SPH2N/PAEM文章简介:利用太阳光进行光催化反应制备绿色清洁能源是非常诱人的技术。加之,如今人们依赖化石能源给大气中排放了过多的CO2。将CO2在光的作用下转换成可燃烧的CO、CH4或者其他碳氢化合物是一个两全其美的方法。CO2是一个很稳定的分子,许多研究关注制备高效、稳定的光催化剂来提高CO2还原性能,这些研究主要通过扩展光响应范围、加快电荷输运、增加活性位点、选择性吸附CO2等。但是,光催化CO2反应目前面临的一个大问题是,不管用哪种催化剂,反应的产物还是太少,不能在现实中实施。然而,反应中CO2的实际用量很少,每克催化剂每小时大约只用毫摩尔级的CO2,但是绝大部分研究在大气压下纯二氧化碳中进行。我们认为,在合适的CO2含量中研究CO2还原反应是很有意义的。因此,我们用常规TiO2作为光催化剂,在低真空下研究了光催化CO2的反应效率。如下图1,实验表明低真空气氛有助于提高光催化CO2反应性能。在低浓度CO2(10%)中,低真空下反应的CH4产率提高了100倍,纯CO2中的CH4产率也提高了大约18倍。通过质谱检测,反应生成的CH4来源于CO2而不是杂质等的其他物质。图1(a)不同气压下CH4产率,(b)-80kPa和大气压下CH4产率对比.(c)用13CO2反应得到的13CH4的质谱谱线.催化反应的稳定性在实际实施中举足轻重,我们测试了在低真空下反应四个循环(图2a)和连续反应24小时(图2b)的情况,实验表明,CH4产率和选择性均稳定。24小时后,CH4产率在低真空下是3.4umol,在大气压下是0.9umol.我们用XPS分析了在不同气压下的催化反应过程(图2c-d)。低真空下,反应3.5小时,催化剂表面COH*饱和,一直持续到反应24小时(有CH4生成);而在大气压下,反应3.5小时的COH*很少量,反应24下时催化剂表面的COH*才逐渐饱和(如图2e)。图2 低真空下光催化CO2反应的稳定性测试.(a)循环测试,(b)连续测试.测试前后催化剂表面COOH*和CO*的(c)C1s变化情况和(d)定量分析,(e)COH*的演变图.我们分析了低真空下光催化CO2反应的机理。如图3a,TiO2吸收了光子产生电子,这些光电子一部分与CO2反应生成CO和CH4。检测到的光电流是电子-空穴再结合和表面吸附物质导致的电子湮灭这两者的竞争结果导致。在低气压下,后者被抑制,体现出增大的光电流(如图3b),这有助于CO2的还原反应。另外,大气中的气体分子由于布朗运动能促进CO从催化剂表面的脱附,不利于CH4的生成(如图3c)。大气中的气体分子也会占据催化剂表面的位点,导致CO-不易与-H结合,阻碍CH4的生成(如图3d)。图3低真空下光催化CO2反应的机理分析.(a)TiO2的能带结构,(b)不同气压下的光电流对比,(c)布朗运动对反应的影响,(d)活性位点抑制.为了验证低真空下光催化CO2反应性能提高,我们用Pt-TiO2催化剂研究了光催化CO2反应,结果如图4。低真空下,CH4产率是1.47umol,选择性是94.71%;而大气压下,CH4产率是0.83umol,选择性是81.14%。图4低真空下光催化CO2反应的验证.(a)Pt-TiO2的CH4产率,(b)不同Pt含量的CH4产率对比.总之,研究表明气压对光催化CO2还原反应有很大的影响,低真空下光催化CO2反应性能有所提高。不论在纯CO2中还是在低浓度CO2(10%)中,这个结论依然成立。性能增强主要来源于低真空下光电子能更好的聚集、布朗运动较弱、有更多的活性位点。我们认为这种从工程学角度来提高光催化CO2的反应效率是有效且普适的策略,能为光电催化CO2还原反应和其他反应提供有价值的参考。
229人看过
2025-02-02 12:10:12高效毛细管电泳仪功能有哪些?
高效毛细管电泳仪功能 高效毛细管电泳仪是一种常用于生物化学、药物分析和环境监测等领域的实验仪器,它在分离分析技术中占据着举足轻重的地位。本文将介绍高效毛细管电泳仪的核心功能以及它如何在多种科研和工业应用中发挥重要作用。通过对毛细管电泳仪的功能细节解析,您将全面了解这一技术如何提高分析效率,优化分离效果,并助力精确的科研实验。 高效毛细管电泳仪主要通过电场驱动分子在毛细管内的迁移,实现样品的分离。该仪器的一个显著特点是它能够在较短的时间内完成复杂样品的分离工作,且具有较高的分离效率。这是由于毛细管电泳技术利用了样品中各组分在电场中的迁移速度差异,不同分子根据其电荷和大小的不同,移动的速度也有所不同,从而实现分离。 高效毛细管电泳仪具备较高的分离效率。这一功能是通过超高分辨率的分离系统实现的,利用电场的强大作用,使得样品中微小差异的分子能够在短时间内分离开来。传统的电泳技术可能在较长的时间和较大样品量的条件下仍无法获得理想的分离效果,而高效毛细管电泳仪则通过控制电场强度和毛细管内流体流动性,显著提高了分离效率。 自动化程度高是高效毛细管电泳仪的另一大优势。该仪器可以通过精确的程序控制进行样品加载、电场控制、数据采集与处理等操作,大大减少了人工操作的复杂性和误差。这一自动化过程不仅提高了实验的准确性,还增强了实验结果的可重复性,为研究人员提供了更加稳定和可靠的数据支持。 第三,毛细管电泳仪在分离速度上表现尤为突出。与传统的液相色谱或气相色谱仪相比,毛细管电泳仪能够在几分钟内完成复杂样品的分离。这种高效的分离速度,不仅为实验室节省了大量时间,也使得研究人员能够更高效地进行多批次实验,尤其是在对高通量筛选的需求上,毛细管电泳仪表现出了不可替代的优势。 毛细管电泳仪广泛应用于多种领域,包括生物制药、食品安全、环境监测以及临床诊断等。它能够分离复杂的生物样品,如蛋白质、多肽、核酸等,为生命科学研究提供有力的支持。尤其是在药物研发过程中,毛细管电泳仪能够提供精确的药物代谢物分析,帮助药物开发团队优化药物的成分和结构。 高效毛细管电泳仪的应用并不仅限于实验室研究,它同样在质量控制和生产过程中展现出了巨大的价值。在工业生产中,毛细管电泳仪可以用来检测原材料的质量、监控生产过程中的样品质量,以及对成品进行检验,确保每一批产品都符合严格的质量标准。 高效毛细管电泳仪凭借其高分辨率、高效率、自动化以及广泛的应用前景,已成为现代实验室中不可或缺的重要工具。它的核心功能——精确的分离、快速的数据处理与自动化操作,不仅提升了研究效率,也推动了各行业的技术革新。随着科技的不断进步,毛细管电泳技术将在未来发挥更加重要的作用,尤其是在医学、环保及高端制造业等领域的广泛应用,将进一步展现其无可替代的价值。
208人看过
2022-11-25 11:40:15低真空下的高效光催化二氧化碳还原反应
1. 文章信息标题:High-efficiency photoreduction of CO2 in a low vacuum中文标题: 低真空下的高效光催化二氧化碳还原反应页码:15389-15396DOI:10.1039/d2cp00269h               2. 文章链接https://pubs-rsc-org-443.webvpn.las.ac.cn/en/content/articlelanding/2022/cp/d2cp00269h3. 期刊信息期刊名:Physical Chemistry Chemical PhysicsISSN:1463-90842021年影响因子:3.945分区信息: 二区TOP(升级版)涉及研究方向: 物理化学、化学物理、生物物理化学 4. 作者信息:第 一作者是 Yuxin Liu (刘钰鑫) 。通讯作者为  Shuai Kang (康帅)、Zhuofeng Hu (胡卓锋)、Wenqiang Lu (陆文强)。5.产品型号:CEL-SPH2N系列全自动光解水系统利用太阳光进行光催化反应制备绿色清洁能源是非常诱人的技术。加之,如今人们依赖化石能源给大气中排放了过多的CO2。将CO2在光的作用下转换成可燃烧的CO、CH4或者其他碳氢化合物是一个两全其美的方法。CO2是一个很稳定的分子,许多研究关注制备高效、稳定的光催化剂来提高CO2还原性能,这些研究主要通过扩展光响应范围、加快电荷输运、增加活性位点、选择性吸附CO2等。但是,光催化CO2反应目前面临的一个大问题是,不管用哪种催化剂,反应的产物还是太少,不能在现实中实施。然而,反应中CO2的实际用量很少,每克催化剂每小时大约只用毫摩尔级的CO2,但是绝大部分研究在大气压下纯二氧化碳中进行。我们认为,在合适的CO2含量中研究CO2还原反应是很有意义的。因此,我们用常规TiO2作为光催化剂,在低真空下研究了光催化CO2的反应效率。如下图1,实验表明低真空气氛有助于提高光催化CO2反应性能。在低浓度CO2(10%)中,低真空下反应的CH4产率提高了100倍,纯CO2中的CH4产率也提高了大约18倍。通过质谱检测,反应生成的CH4来源于CO2而不是杂质等的其他物质。图1(a)不同气压下CH4产率,(b)-80kPa和大气压下CH4产率对比.(c)用13CO2反应得到的13CH4的质谱谱线.催化反应的稳定性在实际实施中举足轻重,我们测试了在低真空下反应四个循环(图2a)和连续反应24小时(图2b)的情况,实验表明,CH4产率和选择性均稳定。24小时后,CH4产率在低真空下是3.4umol,在大气压下是0.9umol.我们用XPS分析了在不同气压下的催化反应过程(图2c-d)。低真空下,反应3.5小时,催化剂表面COH*饱和,一直持续到反应24小时(有CH4生成);而在大气压下,反应3.5小时的COH*很少量,反应24下时催化剂表面的COH*才逐渐饱和(如图2e)。图2 低真空下光催化CO2反应的稳定性测试.(a)循环测试,(b)连续测试.测试前后催化剂表面COOH*和CO*的(c)C1s变化情况和(d)定量分析,(e)COH*的演变图.我们分析了低真空下光催化CO2反应的机理。如图3a,TiO2吸收了光子产生电子,这些光电子一部分与CO2反应生成CO和CH4。检测到的光电流是电子-空穴再结合和表面吸附物质导致的电子湮灭这两者的竞争结果导致。在低气压下,后者被抑 制,体现出增大的光电流(如图3b),这有助于CO2的还原反应。另外,大气中的气体分子由于布朗运动能促进CO从催化剂表面的脱附,不利于CH4的生成(如图3c)。大气中的气体分子也会占据催化剂表面的位点,导致CO-不易与-H结合,阻碍CH4的生成(如图3d)。图3低真空下光催化CO2反应的机理分析.(a)TiO2的能带结构,(b)不同气压下的光电流对比,(c)布朗运动对反应的影响,(d)活性位点抑 制.为了验证低真空下光催化CO2反应性能提高,我们用Pt-TiO2催化剂研究了光催化CO2反应,结果如图4。低真空下,CH4产率是1.47umol,选择性是94.71%;而大气压下,CH4产率是0.83umol,选择性是81.14%。图4低真空下光催化CO2反应的验证.(a)Pt-TiO2的CH4产率,(b)不同Pt含量的CH4产率对比.总之,研究表明气压对光催化CO2还原反应有很大的影响,低真空下光催化CO2反应性能有所提高。不论在纯CO2中还是在低浓度CO2(10%)中,这个结论依然成立。性能增强主要来源于低真空下光电子能更好的聚集、布朗运动较弱、有更多的活性位点。我们认为这种从工程学角度来提高光催化CO2的反应效率是有效且普适的策略,能为光电催化CO2还原反应和其他反应提供有价值的参考。产品推荐:CEL-PAEM-D8Plus光催化活性评价系统    CEL-PAEM-D8Plus光催化活性评价系统(专业全自动二氧化碳还原CO2+全解水H2O)是评价光催化剂的重大升级, 主要用于专业全自动二氧化碳还原密闭体系分析,兼容光解水、全解水。系统最 大的优势是全新的外观设计,更加方便的使用,系统所有管路全部采用控温,实现样品采集与样品的分析无缝连接。D8Plus将玻璃系统集成于封闭遮光的箱体内,易于移动,不易损坏。在催化剂的成本较昂贵的实验中,更有利用光催化CO2的应用。实现在线全自动无人值守测试分析;可选择手动、半自动、全自动取样方式;配置软件USB反控;测试范围广,氢、氧、CO2、甲烷、CO、烃类、甲醛、甲醇、甲酸等微量气体。
337人看过
2024-12-19 16:08:55极谱仪如何使用才能更加高效?
在现代科学研究和工业生产中,极谱仪作为一种高效的分析工具,广泛应用于化学分析、环境监测、材料研究等多个领域。其核心优势在于能够通过极谱法对物质的电化学行为进行测量,为分析师提供高灵敏度、高选择性的检测结果。极谱仪的工作原理极谱仪是一种基于电化学反应的分析工具,主要通过测量电极电流随电位变化的关系,来确定样品中各种元素或化合物的浓度。其核心原理是利用电化学反应中产生的电流变化来推测物质的含量。极谱仪的应用领域化学分析 极谱仪在化学分析中应用广泛,尤其在分析金属离子、无机物以及一些有机化合物的浓度时,极谱仪能够提供极高的灵敏度。通过对电流与电压之间关系的精确记录,研究人员可以精确识别样品中微量成分。环境监测 在环境监测领域,极谱仪常用于检测水体中的重金属污染物如铅、铜、镉等。其高精度能够有效帮助检测水质污染水平,保障环境安全与生态平衡。医药分析 极谱仪还被广泛应用于医药行业,尤其是在药物分析和质量控制方面。通过检测药物中的活性成分和杂质,极谱仪帮助确保药品的质量与安全性。材料研究 在材料科学中,极谱仪能够用于研究金属、合金等材料的电化学行为,探索材料的腐蚀特性、耐久性等重要参数。这对于材料的改性与新材料的开发具有重要意义。极谱仪的使用方法样品准备 在使用极谱仪之前,首先需要对待分析的样品进行处理。样品应根据不同的需求进行溶解、稀释或其他处理,以确保能够在测量中获得准确的电流信号。设备校准 极谱仪在使用前需要进行精确的校准,以确保测试结果的准确性。校准过程中,通常会使用标准溶液或已知浓度的试剂来调整仪器的工作状态。测试过程 样品准备和设备校准完成后,操作人员可以将样品放入分析槽,设定合适的电位范围,并启动设备开始测量。随着电位的变化,极谱仪会记录电流的变化数据,通过对数据的分析,得出样品中各成分的浓度。结果分析与解释 测量结束后,操作人员需要根据极谱图进行数据解读,判断样品中不同物质的浓度及其电化学特性。极谱仪的优势与挑战极谱仪具有显著的优势,首先是其高灵敏度,可以检测到非常微量的物质;仪器操作相对简单,且维护成本低。与传统的分析方法相比,极谱仪具有快速、低成本、高效的特点,特别适用于快速检测和大规模分析。极谱仪也存在一些挑战,主要的问题是受到干扰的可能性。例如,在复杂的样品中,其他成分可能会影响电流信号,导致测量结果出现误差。
180人看过
2025-08-12 17:37:43拥抱LIMS,开启实验室的智能高效新时代!
在数字化转型浪潮下,实验室信息管理系统(LIMS)已成为现代实验室的核心引擎,通过智能化、自动化与合规化技术,全面革新传统管理模式。以 King’s LIMS 为代表的领先解决方案,始终以 “全流程合规、资源最优配置、数据深度赋能” 为核心目标,助力实验室实现效率与质量的跨越式提升。King’s LIMS 核心特点与优势,构筑实验室卓越运营基石合规性保障:严格遵循 CNAS 等规范要求,实现实验任务全流程、样品全生命周期及全要素的合规化管理,为实验室规范化运营提供坚实基础。智能任务排程:基于实验员技能与设备空闲状态自动完成任务排程,有效优化资源利用率,大幅减少人工调度误差,提升任务执行效率。数据智能采集:支持多种方式实时采集实验过程数据,从源头保障数据的完整性与准确性,避免人工录入可能产生的错误。自动化报告生成:实验报告自动生成,兼容文本编辑软件(如:WPS等)对报告模板进行多人在线协同编辑,支持多种格式输出。从而缩短报告交付周期,高效提升团队协作效率。多维度数据分析:内置多维度报表引擎,支持自定义分析维度与可视化图表展示。为用户提供深度业务洞察,助力管理层做出科学决策。移动端兼容:配备功能完善的移动端应用,操作界面简洁直观、易于上手。实现实验室现场数据录入与审批流程,极大提升工作灵活性与便捷性。平台化与集成性:支持与数据采集系统、电子原始记录系统、物资管理系统、质控系统、数据分析系统、行政办公系统等无缝对接、组合使用,轻松构建一体化管理平台,打破信息孤岛。随需而变的业务流程引擎:基于流程引擎构建,可根据质量管理要求按需定制业务流程。确保业务流程与工作模式完美契合,让用户快速上手、轻松操作。灵活定义的表单与业务拓展:支持表单自定义配置,能快速实现各类数据的多样化展现。结合流程引擎,可快速拓展新业务场景,无需进行二次开发,降低系统扩展成本。多实验室协同:支持异地多实验室数据实时同步与统一管理,高效满足集团化实验室的资源整合需求,助力实现跨地域协同工作。 智能 LIMS 系统以合规为根基、以智能为动力、以数据为燃料、以协同为纽带,全方位激活实验室的每一项资源、每一个流程、每一组数据,推动实验室从 "分散运营" 走向 "协同高效",携手 King’s LIMS,让它成为您实验室数字化转型的强大引擎,共同驱动智慧升级,智启未来。
181人看过
PAMS 57组分
大气环境综合监测
民用航空维修用航空器材
2021年度科技成果登记工作
显微镜计数法
分离过滤技术
省级计量比对项目
中德科学中心
变压器用绕组温控器校准规范
科仪展CISILE
化学科学部
光伏发电等行业
移动生物检测实验室
数据保护工作指导意见
平板显示用剥离液循环再生技术
重力计量基准
石化化工行业鼓励推广应用
体育场馆智慧化建设
最大折射式望远镜
大长度精密测量实验室
柔性超灵敏光电传感阵列
磁约束核聚变能发展研究课题
等离子体原子发射光谱法
全国碳市场
大力值精密测量实验室
在运电子式交流电能表
区域创新发展联合基金
水生态环境质量专题
长三角G60科创走廊
智慧运动场
电磁卫星载荷交叉检验方法研究
强网络安全
空气质量预报技术
地热资源监测平台
VOCS实验室能力考核
二等大质量砝码标准装置