2025-01-10 17:05:18微纳光纤制作平台
微纳光纤制作平台是专门用于制备微纳级光纤的精密设备系统。该平台集成了光纤拉制、切割、熔融及测试等多种功能于一体,可实现光纤直径从微米到纳米级别的精确控制。其特点包括高精度、自动化程度高、操作简便等,广泛应用于光通信、传感、生物医学及量子光学等领域,为科研及工业生产提供了高质量的微纳光纤材料。

资源:13744个    浏览:50展开

微纳光纤制作平台相关内容

产品名称

所在地

价格

供应商

咨询

微纳光纤定制加工
国外 亚洲
面议
筱晓(上海)光子技术有限公司

售全国

我要询价 联系方式
微光纤板(FOP)
国外 亚洲
面议
滨松光子学商贸(中国)有限公司

售全国

我要询价 联系方式
全光纤多功能研发平台
国内 上海
面议
上海昭沅仪器设备有限公司

售全国

我要询价 联系方式
微光纤板(FOP) J5743
国外 亚洲
面议
滨松光子学商贸(中国)有限公司

售全国

我要询价 联系方式
微光纤板(FOP) J3182-74
国外 亚洲
面议
滨松光子学商贸(中国)有限公司

售全国

我要询价 联系方式
2023-02-05 09:13:27纳克微束祝您元宵节快乐!
万家灯火,欢乐元宵!纳克微束祝大家好梦皆圆!
169人看过
2023-02-01 14:56:12蔡司激光共聚焦显微镜-微纳器件的表征分析
对微纳器件进行表征时,常关注的便是器件的表面形貌和三维尺寸信息,比如粗糙度、深度、体积等,这些都是评价微纳加工工艺的重要指标。然而,在进行表面三维的分析工作中,我们可能常遇到这样的苦恼:  光学明场无法直接定位到亚微米级缺陷结构!  样品结构太复杂,微弱信号无法捕获,难以准确测量尺度信息!  三维接触式测量经常会损伤柔软样品,导致测试结果不准确!  今天,友硕小编将从下面几个角度来看看蔡司激光共聚焦显微镜如何帮助你更好地解决这些问题。  失效分析:多尺度多维度原位分析!  器件表面往往存在一些特殊的结构或缺陷,比如亚微米尺度的划痕,这些特征难以在光学明场下被直接观察到。C-DIC(圆微分干涉)观察模式可以让样品表面亚微米尺度的微小起伏都可以呈现出浮雕效果,帮助我们快速定位并开展下一步的分析工作。  ▲ 不同观察方式下晶圆表面缺陷  在定位到感兴趣区域后,可以直接切换到共聚焦模式,进行表面三维形貌扫描,并进行尺寸测量及分析,无需转移样品即可完成样品多尺度多维度的表征。  ▲共聚焦三维图像及深度测量  对于某些样品,暗场和荧光模式也是一种很好定位方法,表面起伏的结构在暗场下尤其明显,如蓝宝石这类能发荧光的晶圆,利用荧光成像也能帮助我们快速地定位到失效结构。甚至,共聚焦还可以和电镜或者双束电镜(FIB)(点击查看)实现原位关联,在共聚焦显微镜下进行定位后转移样品到电镜下进行更高分辨的表征分析。  深硅刻蚀:结构深,信号弱,蔡司激光共聚焦显微镜有办法!  深硅刻蚀的样品通常为窄而深的沟壑结构。接触式测量(如台阶仪)无法接触到沟壑底部测得信息,而由于结构特殊造成了反射光信号损失,常规白光干涉或者显微明场无法捕获底面的微弱信号。因此,不得不对样品进行裂片分析,这不仅破坏了样品,而且还使分析流程复杂化。  西湖大学张先锋老师用蔡司激光共聚焦显微镜对深163.905 μm,宽3.734μm的刻蚀坑进行成像,高灵敏探测器、大功率激光及Z Brightness Correction技术可以帮助成功检测到底部的微弱信号,完成大深宽比(近50:1)样品的三维形貌表征与测量,轻松实现无损检测分析。
290人看过
2023-06-08 17:52:34邀请函|飞纳电镜邀您参加微纳科技与先进材料创新大会 2023
复纳INVITATION微纳科技与先进材料创新大会(2023)将于 6 月 10 日 - 12 日在重庆举办。本次会议旨在凝聚优势力量、加强纳米科学与微纳制造技术的基础研究与应用研究,促进多学科交叉融合,促进先进材料产业化的发展。时间:2023 年 6 月 10 日 - 12 日地点:重庆两江云顶大酒店复纳科技展位号:7 号新兴的微纳材料在电子、通信和物联网、能源存储、化工和燃料生产、医疗保健、药物输送等领域应用广泛。纳米材料的性质与其组成和表面形貌有很大的关系,复纳科技拥有一系列高精尖的分析检测仪器与先进的解决方案,可以对纳米材料进行分析表征和改性。欢迎各位老师同行莅临【7】号展位,和我们一起探讨交流!庄思濛 复纳科技产品经理报告时间:6月12日 16:05-16:25本次会议中,复纳科技产品经理庄思濛将在“微纳技术在新能源电池领域中的应用技术”分会场带来《电池粉末原子层沉积包覆改性及原位电镜表征方案》的主题报告。1、Phenom-飞纳台式扫描电镜飞纳台式扫描电镜操作简单,效率高,成像质量高,其优异的低真空模式可实现无需喷金直接观察不导电样品。最 新的第二代场发射扫描电镜 Phenom Pharos G2 分辨率优于 1.5nm,是分辨率最 高的台式扫描电镜,是纳米材料表征的强有力工具。Phenom Pharos G2飞纳台式场发射扫描电镜Phenom XL G2飞纳台式扫描电镜大样品室卓 越版Phenom ProX飞纳台式扫描电镜能谱一体机2、Forge Nano-原子层沉积系统ALD 原子层沉积技术已被证明可用于多种组分以及纳米结构的制备,包括单原子 / 团簇催化剂、锂电材料表面包覆等等。Forge Nano 设备基于 ALD 工艺可实现从毫克到千吨级的粉末包覆处理量,能够有效提高电池化学性能与安全性。3、DENSsolutions-TEM 原位实验方案DENS 产品可以为 TEM 样品施加外界刺激,实现在 TEM 中引入气、液、热、电等多种条件,捕捉 TEM 样品在真实环境下的动态现象。目前提供的四种原位实验方案:Wildfire TEM 原位加热方案、Lightning TEM 原位热电方案、Climate TEM 原位气相加热方案和 Stream TEM 原位液相加热 / 加电方案。Wildfire 原位加热样品杆Lightning 原位热电样品杆Lightning 原位热电样品杆Stream 原位液相加热/加电样品杆Climate 原位气相加热样品杆4、VSParticle-全自动纳米研究平台VSParticle 设备采用火花烧蚀制备纳米颗粒的技术,可对产生的颗粒进行粒径的控制,从而获得不同粒径中位值的单分散纳米气溶胶。此外该技术也能用于进行快速打印以及粉末表面的纳米沉积。欢迎各位老师莅临展位与我们探讨交流,我们将随时为您提供专业的解答与支持,现场也有精美小礼品相送噢!
222人看过
2023-05-31 13:03:22客户成就 |基于光纤的贝塞尔光发生器制作
贝塞尔光束从其被发现开始,由于其比光学中典型的高斯光束具有特殊的优势,拥有独特的无衍射和自恢复特性,引起了科学界极大的兴趣。这些特性也就意味着光束在被物体部分阻挡后可进行自我重建。由于这些独特性,贝塞尔光束在光学镊子、显微镜、光谱学和通信应用方面有很大的潜力。然而由于其依赖于空间光元件,并且在满足定制光束参数的需要方面受到限制,因此在实际的科学实验中要产生贝塞尔光束是十分具有挑战性的。如今,借助于Nanoscribe的双光子聚合技术可直接在光纤上打印新型光子结构,使其产生零阶和涡流贝塞尔光束。在光纤上打印微纳光子结构以产生零阶和涡旋贝塞尔光束贝塞尔光束的特殊性使其成为各种光学应用(例如通信、光诱捕和成像等)最 佳选择。如果你看到贝塞尔光束的横截面,你会发现一组同心圆或圆环,与典型的高斯光束相比,光束的最内圈可以在更长的延伸范围内保持聚焦。即使贝塞尔光束被一个物体部分阻挡,光束在穿过该物体后能够进行自我重建。然而,要将圆形光束转化为若干环形,需要特殊的光学器件,如锥状折射材料axicon或全息光束整形方法。为了克服这些方法所需的空间光元件的限制,基于光纤的贝塞尔光束发生器应运而生。但是,当涉及到调整光束参数时,这些基于光纤的解决方案却是有限的,并且只提供零阶贝塞尔光束的生成。来自沙特阿拉伯阿卜杜拉国王科技大学的科学家们开发了一种新的方法来制造一个由堆叠的微光元件组成的光子结构。他们将该结构直接3D打印在光纤面上,以实现从光纤生成零阶和涡流贝塞尔光束。 基于光纤的贝塞尔光束发生器的设计由三个元素组成,用于对齐单模光纤输出的高斯样光束,并将其转化为贝塞尔光束。这些微光学元件是使用Nanoscribe的2PP打印技术在光纤面上一次性3D打印出来的。图片来自于:KAUST新型解决方案-光纤上打印3D结构科学家们使用双光子聚合高分辨率三维打印技术,为从光纤中直接产生零阶和高阶贝塞尔光束,并与光纤的核心对齐提供了有效的解决方案并。同时,Nanoscribe的IP-Dip光刻胶提供了生产光子晶体光纤设计所需的高空间分辨率,以便操纵光束。全新微纳加工方案使得打印的微光学元件具有较低的表面粗糙度。三维打印的微光学元件显示了光束转换的高效率和低传输损耗。基于2PP原理三维打印技术能够打印先进的任意形状的复杂3D微光学元件,如贝塞尔光束发生器。该基于光纤的光子结构由三个微光学元件组成,它们相互对准并与底层光纤面相连接,并可实现单个元件的无缝集成。2PP技术可实现按需定制光学参数来调整光子结构设计。因此,这种复合光子结构的快速原型设计使得在根据具体应用进行改变设计时,可以实现快速的设计迭代周期。得益于2PP三维打印技术的灵活性,定制打印的贝塞尔光束发生器可以应用于内窥镜,光学相干断层扫描、基于光纤的光学捕集和微操纵等领域。SEM特写图显示了基于光纤的3D打印贝塞尔光束发生器,该结构带有螺旋相位板的光子晶体设计和带有支撑结构的微透镜。灵感来自于KAUST的设计。由Nanoscribe制作A2PL技术实现纳米精度三维对准在光纤上打印光子结构来生成贝塞尔光束需要打印精确对准光纤光轴的微光学元件。新一代的Quantum X对准系统可以比其他Nanoscribe基于2PP技术的3D打印系统在达到更高形状精度的同时,更快、更简便、更精确地完成这项任务。这是因为Quantum X align是基于最 先进的平台,并具有专 利的对准双光子光刻技术A2PL®。因此,优化的硬件和软件使得在光纤上以亚微米的精度打印复杂的3D微光学元件成为了可能。项目团队阿卜杜拉国王科技大学-生物和环境科学工程系阿卜杜拉国王科技大学-计算机,电气和数学科学与工程系 原文文献3D-printed fiber-based zeroth- and high-order Bessel beam generator       https://opg.optica.org/optica/fulltext.cfm?uri=optica-9-6-645&id=476826
355人看过
ATP智能卫生监测系统
水中溶解氧含量检测仪
安捷伦细胞分析仪
PAT技术
钨灯丝更换技巧
S44i 恒温摇床
十佳协同创新外商投资企业
旋转蒸发仪设备
MP490全自动视频熔点仪
盐碱雾天实验
光束偏转器
金属材料常见金相组织
氮空位色心(NV中心)技术
量子传感器磁成像
水质溶解氧检测仪
三合一质谱仪
第16届油墨行业技术交流会
白鲜皮配方颗粒的检测
智能配液仪
光电技术应用
P波放电激发探头
电子化学品计量检测技术
PRIMAHH系列离心机
原材料分析手持式近红外光谱仪
薄层色谱法
免疫化学分析技术
跨孔地震CT层析成像
CS100聚焦超声样品处理系统
手持式数字密度计
燃料电池产业
锂电池隔膜热分析表征方案
多普勒测振仪
分光测色仪YS4560
高功率激光器
金相显微镜实验
ATX-3000线束测试仪