2025-01-10 17:02:33电网荷储机制
“电网荷储机制”是指电网、负荷与储能之间相互协调、互动响应的工作机制。它通过优化电力资源配置,实现电力供需平衡。电网作为电力传输的载体,负荷代表电力需求,而储能则用于调节供需矛盾,提高电网的稳定性和灵活性。该机制利用储能系统在负荷高峰时释放电能、低谷时吸收电能,有效缓解电网压力,提升电力系统运行效率。同时,它还能促进可再生能源的接入与消纳,推动能源结构的绿色转型。

资源:939个    浏览:16展开

电网荷储机制相关内容

产品名称

所在地

价格

供应商

咨询

工业企业源网荷储一体化项目微电网系统
国内 上海
面议
安科瑞电子商务(上海)有限公司

售全国

我要询价 联系方式
河南微电网类源网荷储一体化项目怎么做
国内 上海
面议
安科瑞电子商务(上海)有限公司

售全国

我要询价 联系方式
粉碎机制样粉碎机
国内 北京
面议
北京科普瑞医疗仪器有限公司

售全国

我要询价 联系方式
荷霉素
国内 上海
面议
阿拉丁试剂(上海)有限公司

售全国

我要询价 联系方式
蒸馏器储水箱Thermo Scientific™ Barnstead™ 经典蒸馏器储水箱
国外 美洲
面议
赛默飞世尔科技实验室产品

售全国

我要询价 联系方式
2024-12-24 17:45:14储氢高温高压吸附仪怎么用
储氢高温高压吸附仪怎么用 储氢高温高压吸附仪作为一种高科技设备,广泛应用于氢气的储存与运输中。其核心原理基于高温高压环境下,通过吸附材料吸附氢气分子,从而实现氢气的高效储存。本文将详细介绍储氢高温高压吸附仪的使用方法,包括操作步骤、注意事项及其在实际应用中的表现。通过深入了解这一设备的使用方式,您将能够更好地掌握其操作要领,并有效提升实验或工业应用的安全性和效率。 储氢高温高压吸附仪的使用步骤 准备工作 在使用储氢高温高压吸附仪之前,首先需要确保设备处于良好的工作状态。检查仪器的各项功能,确保气体管道连接稳固,压力表和温度传感器正常工作。确认吸附材料是否充足并符合使用要求。 设备连接 连接氢气气源与吸附仪的进气口。此时要注意压力调节器的设置,确保氢气的压力不会超过设备的大承受范围。接通电源后,设置温度和压力参数,以满足氢气吸附的理想条件。 启动吸附过程 启动设备后,系统将根据设定的温度和压力条件开始吸附氢气。在此过程中,吸附材料会逐渐吸收氢气分子,直至达到预定的吸附量。在吸附过程中,设备会实时监测压力和温度的变化,并根据设定程序进行自动调节。 完成后处理 吸附完成后,系统会自动切换到解吸模式,以释放吸附的氢气。在解吸过程中,温度和压力会逐步降低,氢气被释放并准备好用于下游应用。此时,操作人员需要确保设备的稳定运行,并监控解吸过程中的任何异常情况。 安全操作与维护 在使用储氢高温高压吸附仪的过程中,安全是首要考虑的因素。操作人员应时刻保持警觉,确保设备在高温高压条件下不会发生故障。定期检查设备的密封性,确保吸附材料的有效性,并根据使用频率对设备进行必要的清洁和维护,以确保其长期稳定运行。 注意事项 在操作过程中,务必严格遵守设备的操作规程,确保氢气储存和释放的安全。 对于高温高压吸附仪的吸附材料,应根据具体使用要求选择合适的类型,避免材料性能下降或过度消耗。 在进行设备调试时,需特别注意压力表和温度控制器的准确性,避免出现误差导致储氢效率降低。 总结 储氢高温高压吸附仪在氢气储存和运输中的重要性不言而喻。正确的使用方法不仅可以提高设备的工作效率,还能确保操作过程的安全性。通过全面了解其工作原理和操作步骤,您将能够充分发挥该设备的优势,在各类高温高压应用场合中取得更好的结果。
79人看过
2022-08-10 08:57:50运动学习机制研究最新进展
文献速读第11期Neuron:揭示皮质-纹状体神经元被募集形成运动记忆印迹的作用机制学习和执行新的运动技能是大脑的重要功能,涉及到运动皮层和基底神经节的协调活动。初级运动皮层(M1)神经元的活动模式以及纹状体棘状突起投射神经元(Spiny Projection Neurons, SPNs)在运动学习过程中不断适应,从而与习得的技能联系更加紧密。然而,在运动学习过程中,神经元是如何经历突触变化并被招募来形成记忆印迹的,目前的研究尚未完全阐明。2022年7月8日,斯坦福大学的研究人员在《Neuron》杂志上发表题为“Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons”的文章。该研究发现运动学习需要运动皮层中大量的记忆印迹神经元,这些神经元在任务执行过程中被重新激活。此外,运动学习导致树突棘选择性的重塑和M1-纹状体的输出增强。该研究揭示了皮质-纹状体环路在形成长期运动记忆印迹时具有高度选择性的突触可塑性机制。原文链接:https://doi.org/10.1016/j.neuron.2022.06.006Science Advances:运动学习过程中皮层树突棘动态活动的突触前监督机制树突状结构的可塑性涉及到棘的形成和转换,是哺乳动物新皮层学习和记忆形成的细胞学基础。然而,由于突触前输入神经元的身份未知,在学习过程中树突棘重组的生物学原理仍然难以捉摸。2022年7月27日,日本国家生理科学研究所的研究人员在《Science Advances》杂志上发表题为“Presynaptic supervision of cortical spine dynamics in motor learning”的文章,在该研究中,作者通过在学习过程中对运动皮层的树突棘动态变化进行成像,并对其传入突触前神经元进行事后识别,展示了在执行学习任务过程中监督不同的树突棘动态活动的两个突触前神经环路。在运动学习过程中,皮层-皮层神经元之间新出现的树突棘在短暂的接触后,会在技能习得时消除。相反,皮层中与丘脑神经元轴突之间形成的树突棘会持久保持并扩大。这些结果表明,运动皮层锥体神经元树突在运动技能学习过程中具有神经环路分工,包括自上而下的皮质内轴突的动态学习接触和丘脑轴突驱动的突触记忆形成。该研究结果提示,双重的树突棘监督也许能够控制新皮质的多种技能学习。原文链接:https://www.science.org/doi/10.1126/sciadv.abm0531Neuron:迷走神经刺激依赖胆碱能信号强化来驱动运动学习环路的调制迷走神经刺激(Vagus Nerve Stimulation, VNS)是是一种神经调节疗法,在临床上可用于癫痫、抑郁和神经损伤的治疗以及运动功能的康复。然而,VNS影响中 枢神经系统环路的机制尚未明确,极大的限制了治疗的优化。VNS能够导致广泛的大脑激活,但其对行为的影响是非常具体的,这表明VNS对行为参与的神经环路具有独特的可塑性。2022年7月19日,美国科罗拉多大学医学院的研究人员在《Neuron》杂志上发表题为“Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement”的文章。在该研究中,为了了解VNS如何导致特定的环路调节,作者利用了光遗传学和在体钙成像等手段。在小鼠运动技能学习任务中,VNS通过胆碱能强化机制来增强动物运动学习的熟练程度并快速巩固习得的技能。在初级运动皮层中,VNS能够驱动对行为结果作出反应的神经元产生精确的时间调制。这表明,VNS可能通过胆碱能信号来加速M1的运动细化,该研究为优化VNS靶向特定疾病相关环路开辟了新途径。原文链接:https://doi.org/10.1016/j.neuron.2022.06.017Cell Reports:纹状体胆碱能中间神经元可作为帕金森病潜在的治疗靶点纹状体胆碱能中间神经元(Striatal Cholinergic Interneurons, CINs)在活动短暂停顿后对显著或奖励预测相关的刺激做出反应,涉及到学习和行动选择。这种停顿在帕金森病的动物模型中消失,该信号如何调节纹状体网络仍然是一个开放的问题。2022年7月5日,法国艾克斯马赛大学的研究人员在《Cell Reports》杂志上发表题为“Cholinergic interneuron inhibition potentiates corticostriatal transmission in direct medium spiny neurons and rescues motor learning in parkinsonism”的文章。在该研究中,作者研究了CINs放电抑制对皮层和表达多巴胺D1受体的中等多棘神经元(Medium Spiny Neurons, MSNs)之间谷氨酸传递的影响。CINs活动的短暂停顿能够增加帕金森状态下D1 MSNs的皮质纹状体传递。这种增强依赖于M4毒蕈碱受体和蛋白激酶A。通过光遗传学/化学遗传学减少体内CINs的激活可以部分地拯救帕金森小鼠MSNs的长时程增强和运动学习缺陷。该研究结果表明,CINs对皮层-纹状体传导和纹状体依赖的运动技能学习的控制依赖于多巴胺能输入的完整性。这些发现使得CINs成为帕金森病潜在的治疗靶点。原文链接:https://doi.org/10.1016/j.celrep.2022.111034
212人看过
2022-05-23 23:04:12储层物性指什么?低场核磁共振如何用于储层物性分析
储层物性指什么?低场核磁共振如何用于储层物性分析储层物性是油气储集层的物理性质。广义上还包括储集层岩石的骨架性质、孔隙性、渗透性、含流体性、热学性质、导电性、声学性质、放射性及各种敏感性等。狭义的一般指储层岩石的孔隙率和渗透率。低场核磁共振如何用于储层物性分析:低场核磁共振储层物性分析是利用氢原子核在外加磁场的作用下形成核磁共振现象的这一特性,测量同一样品在不同处理阶段的核磁共振信号,从而求取储层的孔隙度、渗透率、含油饱和度、可动流体饱和度等地质参数的一项新技术。该技术克服了常规岩心分析方法成本高、测试周期长的缺点,具有用量少、速度快、成本低、获取参数多、准确性高等优点。在储层物性方面采用核磁共振技术研究并应用,能够为石油勘探提供可靠且及时的数据,对于油田开发有着重要的实际意义。储层物性评价是储层评价和油气资源评价的重要内容。许多石油院校、科研院所、油田单位在积极探索室内岩石物性准确测定,低场核磁共振技术不断发展起来而且日趋完善。低场核磁共振技术分析样品由测试岩心扩展到了岩屑以及井壁取心,且不受形状的限制,具获取参数多、分析速度快、精度高、可随钻分析、耗资低等特点,并使得在现场快速分析储层物性得以实现,形成了一项特色的快速评价储层物性的核磁共振技术。低场核磁共振驰豫机理固体表面对流体分子的作用力强弱决定了弛豫时间的大小即弛豫速度的快慢。总的来说,弛豫时间快慢由三个方面决定:岩样固体的表面性质;岩样内的孔隙大小;岩样中饱和流体的流体性质和流体类型。岩石孔隙中,三种驰豫机制控制着核磁驰豫过程,分别是表面弛豫、体积弛豫和扩散弛豫。这三种机制同时存在,若满足快扩散条件,单个驰豫机制引起的驰豫速率的和就是总的驰豫速率。岩石孔隙中的流体,存在于类似较大孔隙这种不受限空间时,流体内部会产生自由衰减过程,称之为体积弛豫,也叫自由驰豫。由于孔隙空间不受限,故体积驰豫与孔隙壁无关,与温度、流体粘度、岩石润湿性有关,主要影响因素是孔隙中流体的性质。岩石颗粒表面润湿流体后,流体的扩散运动使得分子与岩石颗粒表面发生频繁碰撞,分子与岩石表面碰撞时,分子会把核自旋的能量传给岩石颗粒表面,于是会因自旋运动重新取向于原来磁场方向,引起纵向弛豫T1;同时,自旋相位发生不可恢复的相散,导致横向弛豫T2的加速。这个过程就是岩石表面驰豫的作用机制。岩石表面驰豫机制与岩石胶结物的性质以及颗粒表面有关。进而反映出岩石的储层物性参数。
224人看过
2024-12-12 15:58:00ph计的基本原理是什么?测量酸碱度有哪些工作机制?
pH计是一种常用于实验室、工业生产、环境监测等领域的仪器,它能够精确地测量溶液的酸碱度,通常以pH值的形式表示。在这篇文章中,我们将详细探讨pH计的工作原理,帮助读者理解pH值的测量过程以及影响测量准确性的关键因素。pH计的基本构造与工作原理pH计的核心原理基于氢离子浓度对溶液pH值的影响。pH值是衡量溶液酸碱度的一个指标,其值范围为0到14,pH值低于7表示酸性,pH值高于7表示碱性,而pH值为7则表示中性。pH计的工作原理基于测量溶液中氢离子(H+)的活度,进而推算出pH值。pH计通常由两部分组成:电极和仪器显示部分。电极一般由玻璃电极和参比电极构成,其中玻璃电极是用来与溶液中的氢离子反应的,而参比电极则提供一个恒定的电势。通过这两个电极的电位差,pH计可以测量到溶液中的氢离子浓度,并根据Nernst方程计算出溶液的pH值。玻璃电极的工作机制玻璃电极是pH计中关键的部分之一。其基本工作原理是:玻璃电极的外部玻璃膜对氢离子有选择性吸附性。当玻璃膜浸入溶液中时,氢离子会与膜表面发生交换反应,形成一个电势差。电极与溶液中的氢离子浓度之间存在一定的关系,这个关系通过Nernst方程描述。Nernst方程表明,氢离子浓度与电极电势之间的关系是对数关系。因此,当溶液中的氢离子浓度发生变化时,玻璃电极的电势也会发生相应的变化。通过测量这种电势差,pH计能够准确地计算出溶液的pH值。参比电极的作用参比电极是pH计中的另一个重要组件。它的主要作用是提供一个稳定的参考电势,确保玻璃电极所测得的电势差能够被准确地转换为pH值。通过参比电极和玻璃电极的配合,pH计能够准确地测量出溶液中的氢离子浓度,从而计算出pH值。pH计的校准与使用为了保证测量的准确性,pH计需要定期进行校准。校准一般使用已知pH值的标准缓冲溶液。常见的标准缓冲溶液包括pH值为4.00、7.00和10.00的溶液。使用pH计时,还应注意电极的清洁与保养,避免电极表面污染或损坏,影响测量结果。影响pH计测量精度的因素pH计的测量精度可能受到多种因素的影响。温度是影响pH值测量的重要因素。溶液的温度变化会改变氢离子的活性,因此,在测量pH值时需要考虑温度的影响。电极的寿命和清洁状态也会直接影响测量精度。使用过程中,电极表面可能会积累污垢或污染物,导致测量误差。因此,定期清洁电极并检查其状况是保证准确测量的必要步骤。
226人看过
2024-08-02 10:38:10解析步入式恒温恒湿试验箱油分离器的工作机制
摘要: 本文详细阐述了步入式恒温恒湿试验箱中油分离器的工作机制,通过对其结构组成、分离原理以及在制冷系统中的重要作用进行深入分析,帮助读者全面理解油分离器如何有效地分离润滑油和制冷剂,从而保障试验箱的稳定运行和高效性能。一、引言步入式恒温恒湿试验箱作为一种用于模拟特定环境条件的精密设备,其制冷系统的正常运行对于保证试验结果的准确性和可靠性至关重要,油分离器作为制冷系统中的一个关键部件,在分离润滑油和制冷剂方面发挥着重要作用。二、油分离器的结构组成(一)入口部分通常设计为喇叭口形状,以引导制冷剂和润滑油的混合气体顺畅进入分离器。(二)分离腔室这是油分离器的核心部分,内部空间较大,为油气分离提供足够的时间和空间。(三)过滤装置如滤网、滤芯等,用于初步过滤较大颗粒的润滑油。(四)出口部分包括制冷剂出口和润滑油出口,分别将分离后的制冷剂和润滑油导出至相应的管道。三、油分离器的分离原理(一)惯性分离混合气体进入分离腔室后,由于流速突然降低和流向的改变,润滑油因其较大的质量和惯性,会与制冷剂气体产生分离倾向,撞击到分离器的内壁或其他障碍物上。(二)离心分离利用特殊的结构设计,使混合气体在分离腔室内产生高速旋转,在离心力的作用下,润滑油被甩向分离器的外周,而制冷剂气体则集中在中心区域。(三)重力分离在分离腔室内,润滑油和制冷剂气体由于密度的差异,在重力作用下会逐渐分层,较重的润滑油下沉,较轻的制冷剂气体上升。(四)过滤分离通过内部的滤网或滤芯等过滤装置,阻挡润滑油颗粒,只允许制冷剂气体通过,从而实现进一步的分离。四、在制冷系统中的作用(一)保证压缩机正常润滑将大部分润滑油分离并送回压缩机,确保压缩机有足够的润滑油供应,减少磨损,延长使用寿命。(二)提高制冷效率防止过多的润滑油进入冷凝器和蒸发器,减少热交换表面的油膜形成,提高换热效率,从而提升制冷系统的整体性能。(三)保护系统部件减少润滑油在制冷管道中的积聚,避免对阀门、膨胀阀等部件造成堵塞和损坏,保证系统的稳定运行。五、结论步入式恒温恒湿试验箱的油分离器通过多种分离原理的协同作用,有效地将润滑油从制冷剂中分离出来,为制冷系统的稳定、高效运行提供了重要保障,深入理解其工作机制对于正确使用、维护和优化试验箱的性能具有重要意义。
38人看过
辽宁化妆品质量管理
电网荷储机制
低碳技术推广方案
质谱仪发展
保卫碧水蓝天
贵州算力券
仪器行业绿色转型
科学仪器共享
智能算力建设
绿色化发展
餐饮非预包装微生物检定
色谱仪发展
中国网联车
多环芳氢代谢物测定
低碳经济建设
国家药典委
仪器发展的意义
仪器行业分析
辐射物含量测试
超导体检测工具
中国计量学会
废弃物循环利用
色谱仪标准
低碳技术征集
电磁场检测
高机抗疲劳钛合金
药典质谱法
仪器标准执行
仪器行业受益
科学仪器攻坚行动
计算机工程
国产仪器采购
锂电池强制国标
工业领域机遇
数字经济人才
中华环保联合会