- 2025-01-21 09:32:52太阳能电池薄膜材料
- 太阳能电池薄膜材料是一种用于制造薄膜太阳能电池的关键材料,具有轻薄、灵活、可弯曲等特点。它通过将光能转化为电能,实现太阳能的有效利用。主要类型包括硅基薄膜、铜铟镓硒(CIGS)薄膜、碲化镉(CdTe)薄膜等。这些材料在光伏领域具有广泛应用,对于推动太阳能发电技术的发展具有重要意义。
资源:7239个 浏览:72次展开
太阳能电池薄膜材料相关内容
太阳能电池薄膜材料资讯
太阳能电池薄膜材料文章
太阳能电池薄膜材料产品
产品名称
所在地
价格
供应商
咨询

- 薄膜太阳能电池材料光谱响应测量系统
- 国内 北京
- 面议
-
北京卓立汉光仪器有限公司
售全国
- 我要询价 联系方式

- 薄膜材料试验机
- 国内 北京
- ¥48000
-
北京北广精仪仪器设备有限公司
售全国
- 我要询价 联系方式

- 薄膜材料介电常数介损测试仪
- 国内 北京
- ¥20000
-
北京北广精仪仪器设备有限公司
售全国
- 我要询价 联系方式

- 薄膜材料介电常数检测仪
- 国内 北京
- ¥20000
-
北京北广精仪仪器设备有限公司
售全国
- 我要询价 联系方式

- 薄膜材料介电常数测量仪
- 国内 北京
- ¥20000
-
北京北广精仪仪器设备有限公司
售全国
- 我要询价 联系方式
太阳能电池薄膜材料问答
- 2020-04-01 16:06:29GIXRD和EDXRF技术联合分析太阳能电池薄膜材料
- ●关键词:GIXRD;EDXRF;太阳能电池;薄膜●目标:薄膜的层结构、物相、层厚、层元素组成分析引言 太阳能薄膜电池具有质量小、厚度极薄、可弯曲等优点。当前工业化制作太阳能薄膜电池的材料主要有:碲化镉、铜铟镓硒、非晶体硅、砷化镓等。其中,铜铟镓硒(CuIn1-xGax Se2) 具有成本低、转换效率高、性能稳定、弱光性好、几乎不衰减等优点,是目前世界上Z具潜力的太阳能电池材料。对于材料科研人员,探索铜铟镓硒(CIGS)材料制备工艺以及Z佳掺杂比例对于材料的性能提升是至关重要的。而生产出高品质CIGS薄膜的难点则是解决包括控制薄膜厚度和掺杂均匀性、以及大面积生产稳定性的问题。解决这些影响CIGS薄膜质量的问题有助于生产商提高产品的竞争力。XRD和EDXRF作为快速无损的分析技术,已经越来越广泛的应用于科研和工业生产。在CIGS薄膜电池领域,XRD和EDXRF技术与实际的应用需求十分契合。当科研人员采用新的工艺制备出高性能薄膜材料或者获得一款高性能薄膜材料时,可以利用XRD确认薄膜材料的每一层结构及物相组成,一旦获取了这些信息之后,则可以使用EDXRF对每一层镀层的厚度和元素百分比进行分析,从而帮助科研人员完成薄膜材料的结构和化学组成剖析,并为后续科研工作奠定基础。对于工业生产而言,利用EDXRF技术对产品进行快速、多点的分析,可以在品控方面进行有效的薄膜厚度、掺杂均匀性和工艺稳定性监控,从而保证产品的质量。那么赛默飞世尔科技的XRD和EDXRF能发挥怎样的作用呢?接下来我们就将展示如何使用赛家产品,对CIGS薄膜样品进行薄膜层结构、物相、层厚、层元素组成分析。仪器设备本次实验使用的是赛默飞世尔科技的ARL EQUINOX 100 台式XRD以及ARL QUANT’X台式EDXRF分析仪。ARL EQUINOX 100 台式XRD(见图1)采用了超大面积实时探测器,可以实现超高速实时测量。独 家ZL的Smart Optic™️ 聚焦光学技术,保证了样品在50 W低功率照射下依然可以产生媲美2. 2 KW大功率光管的衍射灵敏度。ARL EQUINOX 100是市场上功能Z全面的台式XRD,丰富的样品台选择极大的拓展了台式机的应用。其中,薄膜样品台(见图2)就可以实现在程序控制下在ω和z方向机动,进行XRD掠入射分析(GIXRD),非常适用于太阳能薄膜材料的镀层研究。图1:ARL EQUINOX 100 X射线衍射仪图2:薄膜样品台ARL QUANT’X EDXRF 分析仪(见图3)配备了高性能的SDD探测器和50 W高功率Rh靶X射线管。该仪器还配备有9组滤光片组合,除元素周期表中原子序数低于11的超轻元素以外,对几乎所有元素均具有较高的激发效率。特别是对于太阳能薄膜电池中的Mo、In、Cd等重元素,仪器拥有极高的灵敏度,这可以大大缩短测试时间。独 家ZL的Wintrace软件集成了镀层分析算法,可以轻松实现对薄膜样品的层厚和每层元素组成的分析。图3:ARL QUANT’X EDXRF分析仪XRD实验ARL EQUINOX 100衍射仪采用 CuKα波长(1.541874 Å)作为光源,将薄膜样品台安装在仪器上,并用双面胶将样品固定在薄膜样品台(见图4)。利用“Omega Z”程序调节ω和z方向位置,使样品处于“准直”状态。设定起始掠入射角度为0.5°,每张谱采集2分钟,入射角度按0.25°递增。采集所得的数据使用JADE 2010软件以及PDF4+数据库进行分析。图4:样品固定在薄膜样品台XRD结果选取采集的部分谱图进行分析,如图5,样品在入射角为1.0°时,图谱仅显示diyi层的衍射峰。而当入射角为2°时,第二层的衍射峰(红色箭头所指处)开始显现,并且随着入射角度的增大第二层的衍射峰强度越来越高。图5:入射角在1.0°、2.0°、3.0°、4.0°、5.0°、6.0°下对应的衍射叠加图如图6,使用JADE2010软件以及PDF4+数据库分别对入射角为1.0°和5.0°的两张图谱进行定性分析,定性分析表明diyi层镀层的物相与CuIn1-xGax Se2化合物的匹配度较高,而第二层的物相则与Mo较为匹配。图6:JADE 2010软件定性分析入射角为1.0°和5.0°下对应的谱图EDXRF实验ARL QUANT’X的超大样品腔适用于大尺寸样品的分析。对于此次测试的薄膜样品,不需要进行任何前处理即可进行测试。将由上述XRD实验中获知的样品元素信息输入仪器的Wintrace软件中,该软件内置了强大的薄膜分析程序,进而建立了该样品的镀层厚度分析方法。表1中列出了方法中采用的元素激发条件,分析环境为空气。每组条件的采谱时长仅为30s。图7为该薄膜样品在50kV激发条件下的光谱图。LayerThicknessElementConcentrationCIGS1.43 micronsCu30Se30In30Ga30Mo0.34 micronsMo30表2:CIGS薄膜测试条件应用小结XRD掠入射分析(GIXRD)可以准确对薄膜和镀层进行层结构的剖析,而XRF可以对镀层的厚度和组成进行准确的测量。XRD技术为XRF分析提供了所需要的镀层结构信息,而XRF分析又能够更好的对XRD的结果进行验证和补充。这两种技术结合起来wan美的解决太阳能电池薄膜样品的分析。
613人看过
- 2023-04-24 13:49:08光生物学、发光材料、环境、食品安全、太阳能电池领域相关文献推荐【学术简讯23年13期】
- 本周我们推荐5篇前沿学术成果,针对光生物学、发光材料、环境、食品安全、太阳能电池,涉及拉曼、荧光。光生物学发光材料环境食品安全太阳能电池“学术简讯”栏目旨在帮助光谱技术使用者时时掌握最 新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等,帮助您了解全 球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。
178人看过
- 2025-01-06 18:15:12薄膜在线测厚仪怎么用
- 薄膜在线测厚仪怎么用:全面解析薄膜测厚技术 随着工业自动化的进步,薄膜在线测厚仪作为一种高效、的测量工具,广泛应用于塑料、涂料、金属薄膜等行业的生产过程中。本文将详细介绍薄膜在线测厚仪的使用方法、操作步骤及其应用原理,帮助相关行业的技术人员更好地理解和掌握这一仪器的使用技巧,提高生产效率与产品质量。 一、薄膜在线测厚仪的工作原理 薄膜在线测厚仪主要基于非接触式测量技术,常用的测厚方式有激光法、X射线法、超声波法以及电磁感应法等。这些技术通过探头或传感器发射信号并接收返回信号,通过计算信号的时间差、反射强度或电磁波的变化来测定薄膜的厚度。该仪器可以实现实时在线监测,帮助生产过程中进行质量控制。 二、薄膜在线测厚仪的操作步骤 仪器安装与调试 在使用薄膜在线测厚仪之前,首先需要确保测量设备已正确安装。仪器通常需要安装在生产线或自动化设备上,确保薄膜表面与探头之间有适当的距离,并避免外界干扰。安装过程中,用户应根据操作手册进行设备调试,确保信号接收稳定。 设置测量参数 操作员需要在仪器的控制面板上设置测量的参数,如测量模式、测量范围、单位等。通常,测量模式有单点测量和连续测量两种,根据生产需求选择相应的模式。还需要设置合适的测量范围,以确保能够准确读取不同厚度的薄膜数据。 校准与测试 在正式使用之前,进行校准是确保测量精度的重要步骤。可以使用标准厚度的校准板进行对比,确保仪器测量值与标准值一致。校准后,可以开始测试薄膜厚度,仪器将实时显示测量结果,操作员可以根据这些数据进行调整。 数据分析与反馈 许多现代薄膜在线测厚仪配备了数据分析功能,可以实时生成厚度分布图、报告等。操作员可以通过分析这些数据,监控薄膜厚度的波动情况,并及时调整生产参数,确保产品质量始终保持在标准范围内。 三、薄膜在线测厚仪的应用领域 薄膜在线测厚仪广泛应用于多个行业,尤其是在对薄膜厚度要求严格的领域。例如: 塑料薄膜行业:用于检测生产过程中塑料薄膜的厚度,确保每一卷薄膜的厚度均匀,避免因薄膜不均导致的产品质量问题。 涂料行业:对涂层厚度进行精准测量,确保涂料层的质量,避免过薄或过厚的涂层影响产品性能。 电子行业:在生产薄膜电池、OLED屏幕等电子产品时,精确控制薄膜厚度是确保性能和可靠性的关键。 四、薄膜在线测厚仪的优势与挑战 薄膜在线测厚仪的大优势在于其非接触式测量,可以在不干扰生产过程的情况下进行实时监测,大大提高了生产效率。仪器的高精度和高稳定性使其能够长时间稳定运行,确保产品的高质量。 薄膜在线测厚仪也面临一些挑战。例如,不同类型的薄膜材料可能需要不同的测量技术和参数设置,某些高粘性或不规则的薄膜可能对测量结果产生干扰。因此,操作员在使用过程中需要根据不同的材料特性进行相应的调整。 五、结论 薄膜在线测厚仪作为一种高效的在线检测工具,能够有效提升生产线的自动化水平,确保产品质量的一致性。随着技术的不断发展,未来的薄膜测厚仪将更加智能化,具有更高的测量精度和适应性。在实际应用中,用户应根据不同的生产需求和薄膜材料特性,合理选择合适的测量方式与设备配置,从而实现佳的测量效果与生产效益。
153人看过
- 2025-01-07 19:45:14激光测厚仪可以测薄膜吗
- 激光测厚仪可以测薄膜吗? 在现代工业中,激光测厚仪凭借其高精度、非接触的特点,广泛应用于各种材料的厚度测量。许多用户在选择激光测厚仪时,会有一个疑问:激光测厚仪是否适用于薄膜的测量?本文将详细探讨激光测厚仪在薄膜厚度测量中的应用情况,分析其优缺点,并为您提供相关的技术参考,以便更好地理解激光测厚仪在这一领域的应用。 激光测厚仪的基本原理 激光测厚仪的工作原理主要基于激光反射或激光透过原理,通过激光束与材料表面的相互作用来测量厚度。当激光光束照射到物体表面时,部分激光会被反射回传感器,传感器通过接收反射回来的光信号来计算材料的厚度。由于其非接触测量的特性,激光测厚仪在测量过程中不需要对样品施加压力或影响,这使得它特别适合用于测量高精度要求的薄膜材料。 激光测厚仪与薄膜测量 薄膜材料常见于电子、光电、材料科学等行业,这些薄膜通常具有较小的厚度范围,且表面光滑或者均匀。激光测厚仪的高精度特性使其非常适合于薄膜的测量,尤其是在纳米级或微米级厚度的测量中,能够提供高分辨率和重复性的测量数据。 薄膜测量的难度也存在于其薄层的物理特性。与传统的厚材料不同,薄膜通常较为透明或半透明,光线的折射、反射等现象可能影响测量的准确性。因此,为了提高激光测厚仪在薄膜测量中的精度,通常需要根据薄膜的材质、表面状态及光学特性对激光设备进行精细调校。 影响激光测厚仪测量薄膜的因素 薄膜的光学性质:薄膜的透明度和反射率会影响激光的反射强度。例如,金属薄膜和透明薄膜在激光反射中的表现差异较大,这需要使用不同的激光波长和光学配置来优化测量精度。 薄膜的表面状态:薄膜表面若存在不规则性或污染,会导致光线的散射,从而影响测量精度。因此,在薄膜测量之前,通常需要保证薄膜表面的光洁度。 测量精度要求:对于要求高精度的薄膜应用,激光测厚仪的分辨率和重复性尤为重要。选择适合的激光系统、校准设备和测量环境条件可以进一步提高测量结果的可靠性。 激光测厚仪的优势与局限性 激光测厚仪的优势在于其非接触式测量、高精度和高速度,适用于大多数薄膜材料的厚度检测,尤其是在需要进行连续在线监测时,激光测厚仪的优势更加明显。激光测厚仪适用于多种材料,包括金属薄膜、半导体薄膜、塑料薄膜等,具有广泛的应用前景。 激光测厚仪在测量非常薄或透明的薄膜时,可能会受到一些限制。例如,当薄膜厚度低于一定范围时,激光信号的反射或透过量过低,可能导致测量误差增大。因此,在选择激光测厚仪时,必须根据薄膜的具体特性,选择合适的设备和测量方法。 总结 激光测厚仪在薄膜测量领域具有广泛的应用潜力,但其效果受到薄膜材质、厚度、表面状态等多种因素的影响。为了确保测量的准确性和可靠性,选择合适的激光系统和精确的测量技术至关重要。在薄膜材料的测量过程中,通过合理的技术调节和环境控制,激光测厚仪能够为用户提供准确、快速的厚度测量结果,满足高精度工业应用的需求。
135人看过
- 2025-01-07 19:45:15薄膜连续测厚仪怎么用
- 薄膜连续测厚仪怎么用:操作指南与技术要点 薄膜连续测厚仪是一种广泛应用于薄膜材料生产与检测过程中的精密仪器,能够对各种薄膜材料的厚度进行实时、连续的测量。本文将详细介绍薄膜连续测厚仪的使用方法、操作步骤以及关键的技术要点,帮助用户更好地掌握该仪器的使用技巧,提高测量准确性和工作效率。 1. 薄膜连续测厚仪的基本原理与结构 薄膜连续测厚仪主要通过非接触式测量原理来获取薄膜厚度数据。常见的测量原理包括激光反射、涡流、超声波等技术。这些技术能够在不破坏薄膜表面的情况下,实时获取其厚度信息。仪器一般由传感器、控制系统、显示界面和数据存储模块组成,传感器根据不同的测量原理进行安装,并通过实时数据反馈与显示,提供准确的厚度值。 2. 薄膜连续测厚仪的操作步骤 2.1 校准仪器 在使用薄膜连续测厚仪之前,首先要对仪器进行校准。校准过程可以确保测量数据的准确性。具体校准步骤根据仪器的不同型号有所差异,但通常都包括对标准样本进行测量,并调整仪器参数以保证其测量精度。 2.2 设置测量参数 根据测量对象的不同,用户需要设置相应的测量参数,例如测量模式、测量速率、单位选择等。薄膜的种类、厚度范围以及生产环境可能会影响仪器的设置,因此在操作之前应根据实际情况进行调整。 2.3 开始测量 在完成校准和设置后,用户可以将薄膜放置在仪器的测量区域,启动测量程序。薄膜连续测厚仪能够在生产线中持续监测薄膜厚度,提供实时数据反馈。仪器通常支持多点测量,可以为用户提供全面的厚度分布信息。 2.4 数据分析与记录 测量完成后,仪器会自动生成厚度数据报告。用户可以通过仪器的显示屏查看实时数据,也可以将数据导出到计算机进行进一步分析。对于生产过程中出现的厚度异常,仪器通常会发出警告提示,便于及时进行调整和修正。 3. 薄膜连续测厚仪的应用领域 薄膜连续测厚仪广泛应用于电子、光伏、涂料、包装等行业。在电子行业中,薄膜厚度的控制对电路板的品质至关重要;在光伏行业,太阳能电池薄膜的厚度直接影响到光电转化效率;而在包装行业,薄膜的均匀性和厚度对产品的保护性和耐用性有着重要影响。 4. 注意事项与维护 定期校准与检查:为了确保仪器的长期稳定性,建议定期进行校准,并检查传感器是否受到污染或损坏。 操作环境控制:薄膜连续测厚仪的精度受环境因素影响较大,如温度、湿度及振动等因素。应尽量在稳定的环境条件下进行测量。 清洁与保养:仪器的传感器和其他部件需要定期清洁,避免灰尘、污渍等对测量结果的干扰。 5. 结论 薄膜连续测厚仪的使用对于提高生产线的自动化水平、保证产品质量具有重要意义。通过合理的操作流程、准确的参数设置和细致的维护,用户能够充分发挥该仪器的优势,确保薄膜厚度测量的高效性与性。掌握测量技巧与技术要点是保证测量数据可靠性的关键,因此,操作人员需要在实际应用中不断积累经验,优化仪器的使用效果。
171人看过
- 技术文章



