
- 2025-01-21 09:35:14光纤测距仪
- 光纤测距仪是一种利用光在光纤中传输的时间或相位差来测量距离的精密仪器。它具有高精度、长距离测量、抗干扰能力强等特点,广泛应用于工程测量、地形测绘、工业自动化等领域。通过发射光脉冲并接收其回波,仪器能准确计算出目标与光纤端点之间的距离。光纤测距仪还具备小型化、轻量化的趋势,便于携带和现场操作。此外,其测量结果稳定可靠,是专业测量人员的得力助手。
资源:3719个 浏览:14次展开
光纤测距仪相关内容
光纤测距仪产品
产品名称
所在地
价格
供应商
咨询
- 测距仪——DME
- 面议
-
上海泽泉科技股份有限公司
售全国
- 我要询价 联系方式
- 徕卡测距仪/激光测距仪D510
- 国外 欧洲
- 面议
-
北京三维麦普导航测绘技术有限公司
售全国
- 我要询价 联系方式
- 徕卡测距仪/激光测距仪D810
- 国外 欧洲
- 面议
-
北京三维麦普导航测绘技术有限公司
售全国
- 我要询价 联系方式
- 测距仪YHJ-200J携带型激光测距仪
- 国内 河南
- 面议
-
郑州艾迪科技有限公司
售全国
- 我要询价 联系方式
- GEO-LASER测距仪
- 国外 欧洲
- ¥670
-
上海智川工贸有限公司
售全国
- 我要询价 联系方式
光纤测距仪问答
- 2025-03-27 14:30:13激光测距仪的特性是什么?
- 激光测距仪的特性是什么 激光测距仪作为一种高精度的测量工具,广泛应用于建筑工程、工业测量、环境监测等多个领域。它利用激光技术,通过测量光束从发射到目标物体反射回来的时间差,从而计算出与物体的距离。本文将深入探讨激光测距仪的核心特性,包括其工作原理、测量精度、操作便利性以及应用场景等方面,以帮助读者全面了解这一先进工具的优势和应用。 激光测距仪的工作原理 激光测距仪的工作原理基于时间飞行法(TOF,Time of Flight)。它通过发射激光束到目标物体,再接收反射回来的光信号。根据光速和返回信号的时间差,计算出距离。该过程具有极高的精度,能够在几乎任何环境条件下进行精确的测量。与传统的机械测量工具相比,激光测距仪的测量过程更为高效和准确。 高精度和高稳定性 激光测距仪大的特点之一就是其极高的测量精度。通过激光的波长和光速的稳定性,激光测距仪能够达到毫米级甚至微米级的测量精度。这使得它在精密工程、建筑测量和科学研究等领域表现突出。与常见的激光雷达(LiDAR)相比,激光测距仪的精度更高,适用于需要精确数据支持的应用场景。 激光测距仪在不同环境下也能保持较高的稳定性。无论是在光照强烈或较暗的环境下,还是在复杂的地形条件下,激光测距仪的性能都不会受到太大影响。它能有效地克服传统测量工具在不良天气或环境中的限制,确保测量结果的可靠性。 操作简便和快速响应 激光测距仪的另一大优势是其操作简单且测量快速。相比于传统的卷尺、标尺等工具,激光测距仪不需要物理接触目标物体,只需对准目标并按下测量按钮,即可获得精确的距离数据。该过程几乎没有等待时间,测量结果能够在瞬间显示出来,显著提高了工作效率。 许多现代激光测距仪还具备数据存储、自动计算面积和体积等功能。用户可以方便地将多次测量的结果存储起来,并进行进一步的分析或计算。这些智能功能使得激光测距仪不仅仅是一种简单的测量工具,而是成为了高效的数据采集和处理设备。 应用广泛 激光测距仪的应用范围非常广泛。在建筑行业,它被用来进行建筑物的尺寸测量、地形勘测、以及施工进度的监控。在工业领域,激光测距仪可以用来检测设备的尺寸、空间对接的精度以及产品的质量控制。环保部门也利用激光测距仪进行水体监测和森林资源调查。激光测距仪还广泛应用于农业、航空、军事等多个领域。 总结 总而言之,激光测距仪凭借其高精度、操作简便、稳定性强等优点,已经成为各行各业不可或缺的重要测量工具。随着科技的不断进步和激光技术的创新,激光测距仪的应用场景将会越来越广泛,其功能也将更加智能化和多样化。通过不断优化其性能,激光测距仪无疑将在未来的测量和测绘领域中占据更加重要的地位。
26人看过
- 2025-03-27 14:30:13激光测距仪的特性包括哪些?
- 激光测距仪的特性包括 激光测距仪是一种广泛应用于各行各业的高精度测量工具,主要用于快速、准确地测量物体之间的距离。随着科技的进步,激光测距仪的应用场景也越来越广泛,涵盖了建筑、工程、工业、航天等多个领域。本文将详细探讨激光测距仪的主要特性,包括其工作原理、精度、测量范围、操作便捷性以及耐用性等方面的优势,帮助用户更好地理解其功能与应用价值。 激光测距仪的核心特性之一是其高精度。相比传统的机械测量工具,激光测距仪通过发射激光束并计算光信号反射回来的时间来测量物体的距离。由于激光光束的直线性和稳定性,激光测距仪能够提供极高的测量精度,通常误差仅在毫米级别,甚至可以达到微米级。这一特性使其在需要高精度测量的场合中尤为重要,尤其是在建筑工程、土木工程等领域。 激光测距仪的测量范围也是其一大优势。现代激光测距仪的测量范围可以从几厘米到数百米不等,一些高端型号甚至能够进行远距离的测量,大可达几千米。这使得激光测距仪不仅适用于小范围的测量任务,还能在大范围的场景中如室外测量、建筑物高度测量等发挥重要作用,满足了不同用户的需求。 除了测量精度和范围,激光测距仪的操作便捷性也是其突出特性之一。许多激光测距仪设计简洁,具有一键操作功能,使用者只需瞄准测量目标并按下按钮,即可快速获得距离数据。这种操作方式大大提高了测量效率,尤其在一些复杂环境中,用户无需接触目标物体即可进行测量,极大地提升了工作效率。部分激光测距仪还配备了智能显示屏和内置计算功能,可以即时计算面积、体积等数据,减少了人工计算的时间。 耐用性也是激光测距仪的一个重要特点。许多激光测距仪采用高强度外壳,能够在各种恶劣环境中正常工作。无论是在高温、低温、潮湿还是粉尘较多的环境中,激光测距仪都能保持稳定的测量性能。部分型号还具有防水防尘功能,符合IP等级认证,能够抵御一定程度的外界侵害,适应各种工作条件。 激光测距仪的反应速度也不容忽视。由于激光光束传播速度极快,测量过程基本可以实时完成。这种快速响应特性使得激光测距仪在快速测量需求中表现出色,尤其在需要多点测量或动态测量的工作场合,如建筑施工、装配线检测等领域,激光测距仪能够迅速完成任务,大大提高了工作效率。 总结来说,激光测距仪凭借其高精度、大测量范围、操作便捷性、良好耐用性以及快速响应等特性,已成为各行各业中不可或缺的工具。它不仅提供了传统测量工具无法比拟的优势,还通过不断技术创新,满足了日益复杂的测量需求。在未来,随着激光测距技术的进一步发展,其应用领域将会更加广泛,成为推动各行业进步的重要力量。
18人看过
- 2022-02-16 17:31:31光纤记录详解,一文带你详细了解光纤记录实验!
- 一、光纤记录工作原理人类的大脑拥有约900亿个神经元,神经元之间通过突触相互连接形成了复杂的神经网络,并由此产生各种复杂的功能。大脑能够合成和释放上百种神经递质,神经信号通过突触释放的神经递质从而在神经元之间进行传递(图1)。图1当神经兴奋传导到突触末端时,会刺激突触上钙离子通道打开促使钙离子大量内流,胞内钙离子浓度瞬时上升,驱动突触小泡将神经递质释放到突触间隙中,释放出的神经递质随即与突触后膜上的受体结合,将递质信号传递给下一个神经元,从而进行信息的逐级传递(图2)。这些神经元以复杂的通路投射到多个脑区,产生了学习认知、情感、控制、动机、奖励等丰富的功能。光纤记录系统则可以通过检测钙离子和神经递质的荧光变化程度来表征群体神经元的活动情况。图2那么光纤记录是如何检测神经活动的呢?以钙离子荧光信号检测为例,光纤记录系统的技术原理是借助钙离子浓度变化与神经元活动之间的严格对应关系,利用特殊的荧光染料或者蛋白质荧光探针,将神经元中钙离子的浓度通过荧光强度表现出来,并被光纤记录系统捕捉,从而达到检测神经元活动的目的。在神经系统中,静息状态时神经元胞内钙离子浓度为50-100nM,而在神经元兴奋时胞内钙离子浓度能上升10-100倍,因此我们可以通过注射钙离子基因编码指示剂(Calcium indicator,如GCaMPs、RCaMPs等)来标记钙离子。钙离子指示剂带有荧光蛋白(如GFP、RFP等)及其变异体的蛋白质,可与钙调蛋白(CaM)和肌球蛋白轻链激酶M13域结合(图3左)。当神经活动增强时钙离子通道打开,大量钙离子内流并与CaM结合,导致M13和CaM结构域相互作用,引发cpEGFP结构重排,从而增强绿色荧光信号(图3 右)。因此我们可以通过检测钙信号的变化来表征神经元的活动,进而研究神经元活动与动物行为的相关性,探究复杂行为背后的调控机制。图3(Marisela Morales, et al. Neuron, 2020)图4:VTA-VGluT2神经元编码先天逃避反应光纤记录检测神经递质信号的原理与上述方法相同,把cpEGFP嵌入特定的神经递质受体,受体与神经递质结合后会引发受体构象改变并发出荧光信号(图5)。通过病毒注射、转染等技术手段,可以将这种可遗传编码的探针表达在细胞或小鼠脑部,借助成像技术,观察神经递质浓度的实时变化。图5(Yulong Li, et al. Cell, 2018)图6:条件反射实验中伏隔核Nac脑区的DA释放二、光纤记录实验方法在光纤记录实验中,首先要选择合适的荧光病毒。荧光染料或指示剂是通过病毒载体转入目标脑区,常用载体为AAV病毒。根据实验的不同,需要选择特异启动子或者Cre-FloxP系统来特异标记目标神经元,无特异性的GCaMPs表达虽然可以观测群体神经元活动但无神经元特异性,光纤记录的作用在于观测特异类型神经元群体的活动。实验流程:1、在目标脑区注射钙荧光病毒,并在注射位点埋植光纤插针,用于收集荧光;图7:病毒注射与陶瓷插针埋植2、待2-3周钙荧光病毒表达后,连接光纤,使用光纤记录系统采集动物在行为学实验中大脑的钙荧光信号;图8:病毒表达3、通过分析软件处理钙荧光信号数据,并结合行为学视频对动物的行为进行分析。图9:光纤记录结合高架十字迷宫实验三、光纤记录数据分析以瑞沃德R820三色光纤记录系统记录的数据为例。1、数据预处理。R820三色光纤记录系统软件集信号采集与数据分析于一体,在数据分析中,数据预处理过程包含平滑处理,基线矫正,运动矫正等功能。平滑处理可以将数据中的过多杂信号去除,最大限度的突出目标peak。基线矫正多数针对的是荧光信号因长时间记录导致漂白信号逐步下降,或者光纤的自发荧光在长期记录下逐步被漂白基线逐步下降等情况。此情形的数据因为整体呈现下降趋势,不利于后续数据作图分析,所以需要进行基线矫正。运动矫正用于采用410nm对照通道的数据,410nm数据可以用于反应背景噪音信号,运动矫正即将410nm数据与470nm数据进行拟合,通过算法从470数据中去除410nm数据的波动,得到真实的荧光数据。图10:光纤记录数据预处理2. 将荧光数据与动物行为数据同步对比,选择事件标记或者增加事件标记,事件相关信号分析作图。图11:事件分析3. 将不同组的数据进行组间对比,即可分析不同处理因素下荧光数据的差异。此外,还可结合行为学视频同步分析动物的运动轨迹。图12:不同数据组间分析通过以上步骤,原始的荧光数据就可以直接出图啦。光纤记录实验的工作原理,实验方法以及数据分析已经全部讲完啦….想体验R820三色多通道光纤记录系统识别下方二维码,即可免费试 用让实验信号更强更准
1195人看过
- 2022-11-24 09:30:59光纤记录实验过程中需要全程避光吗?
98人看过
- 2023-05-31 13:03:22客户成就 |基于光纤的贝塞尔光发生器制作
- 贝塞尔光束从其被发现开始,由于其比光学中典型的高斯光束具有特殊的优势,拥有独特的无衍射和自恢复特性,引起了科学界极大的兴趣。这些特性也就意味着光束在被物体部分阻挡后可进行自我重建。由于这些独特性,贝塞尔光束在光学镊子、显微镜、光谱学和通信应用方面有很大的潜力。然而由于其依赖于空间光元件,并且在满足定制光束参数的需要方面受到限制,因此在实际的科学实验中要产生贝塞尔光束是十分具有挑战性的。如今,借助于Nanoscribe的双光子聚合技术可直接在光纤上打印新型光子结构,使其产生零阶和涡流贝塞尔光束。在光纤上打印微纳光子结构以产生零阶和涡旋贝塞尔光束贝塞尔光束的特殊性使其成为各种光学应用(例如通信、光诱捕和成像等)最 佳选择。如果你看到贝塞尔光束的横截面,你会发现一组同心圆或圆环,与典型的高斯光束相比,光束的最内圈可以在更长的延伸范围内保持聚焦。即使贝塞尔光束被一个物体部分阻挡,光束在穿过该物体后能够进行自我重建。然而,要将圆形光束转化为若干环形,需要特殊的光学器件,如锥状折射材料axicon或全息光束整形方法。为了克服这些方法所需的空间光元件的限制,基于光纤的贝塞尔光束发生器应运而生。但是,当涉及到调整光束参数时,这些基于光纤的解决方案却是有限的,并且只提供零阶贝塞尔光束的生成。来自沙特阿拉伯阿卜杜拉国王科技大学的科学家们开发了一种新的方法来制造一个由堆叠的微光元件组成的光子结构。他们将该结构直接3D打印在光纤面上,以实现从光纤生成零阶和涡流贝塞尔光束。 基于光纤的贝塞尔光束发生器的设计由三个元素组成,用于对齐单模光纤输出的高斯样光束,并将其转化为贝塞尔光束。这些微光学元件是使用Nanoscribe的2PP打印技术在光纤面上一次性3D打印出来的。图片来自于:KAUST新型解决方案-光纤上打印3D结构科学家们使用双光子聚合高分辨率三维打印技术,为从光纤中直接产生零阶和高阶贝塞尔光束,并与光纤的核心对齐提供了有效的解决方案并。同时,Nanoscribe的IP-Dip光刻胶提供了生产光子晶体光纤设计所需的高空间分辨率,以便操纵光束。全新微纳加工方案使得打印的微光学元件具有较低的表面粗糙度。三维打印的微光学元件显示了光束转换的高效率和低传输损耗。基于2PP原理三维打印技术能够打印先进的任意形状的复杂3D微光学元件,如贝塞尔光束发生器。该基于光纤的光子结构由三个微光学元件组成,它们相互对准并与底层光纤面相连接,并可实现单个元件的无缝集成。2PP技术可实现按需定制光学参数来调整光子结构设计。因此,这种复合光子结构的快速原型设计使得在根据具体应用进行改变设计时,可以实现快速的设计迭代周期。得益于2PP三维打印技术的灵活性,定制打印的贝塞尔光束发生器可以应用于内窥镜,光学相干断层扫描、基于光纤的光学捕集和微操纵等领域。SEM特写图显示了基于光纤的3D打印贝塞尔光束发生器,该结构带有螺旋相位板的光子晶体设计和带有支撑结构的微透镜。灵感来自于KAUST的设计。由Nanoscribe制作A2PL技术实现纳米精度三维对准在光纤上打印光子结构来生成贝塞尔光束需要打印精确对准光纤光轴的微光学元件。新一代的Quantum X对准系统可以比其他Nanoscribe基于2PP技术的3D打印系统在达到更高形状精度的同时,更快、更简便、更精确地完成这项任务。这是因为Quantum X align是基于最 先进的平台,并具有专 利的对准双光子光刻技术A2PL®。因此,优化的硬件和软件使得在光纤上以亚微米的精度打印复杂的3D微光学元件成为了可能。项目团队阿卜杜拉国王科技大学-生物和环境科学工程系阿卜杜拉国王科技大学-计算机,电气和数学科学与工程系 原文文献3D-printed fiber-based zeroth- and high-order Bessel beam generator https://opg.optica.org/optica/fulltext.cfm?uri=optica-9-6-645&id=476826
255人看过