
- 2025-01-21 09:33:05微纳米气泡
- 微纳米气泡是指直径在微米或纳米级别的气泡。这些气泡具有比表面积大、上升速度慢、自我净化能力强等特性。在水处理领域,微纳米气泡能够高效去除水中的悬浮物、有机物和微生物,提高水质。在环境保护方面,它们可用于土壤修复和空气净化。此外,微纳米气泡在医疗领域也有应用,如用于超声波治疗和药物输送等,展现出广阔的应用前景。
资源:8943个 浏览:15次展开
微纳米气泡相关内容
微纳米气泡文章
微纳米气泡产品
产品名称
所在地
价格
供应商
咨询
- 光刻胶液体颗粒计数器 微纳米粒子计数仪
- 国内 陕西
- 面议
-
西安普研检测工程有限公司
售全国
- 我要询价 联系方式
- 岩征仪器 微气泡固定床
- 国内 上海
- 面议
-
上海岩征实验仪器有限公司
售全国
- 我要询价 联系方式
- uFAB-3D-微纳米打印系统
- 国外 欧洲
- 面议
-
筱晓(上海)光子技术有限公司
售全国
- 我要询价 联系方式
- 四氧化三铁磁性纳米微球
- 国内 上海
- 面议
-
阿拉丁试剂(上海)有限公司
售全国
- 我要询价 联系方式
- SPG微纳气泡发生技术
- 国外 亚洲
- 面议
-
嘉盛(香港)科技有限公司
售全国
- 我要询价 联系方式
微纳米气泡问答
- 2020-11-03 13:51:49微纳米气泡的直观表征方法
- 摘要微纳米气泡因其自身体积小、比表面积大、自身增压溶解等特点,具有广泛的应用价值。但微纳米气泡受气泡发生条件的影响很大,需要依靠准确的检测方法去优化气泡发生条件,检测微纳米气泡的性质。本文借助动态图像法和纳米颗粒跟踪分析技术,分别检测了微米气泡和纳米气泡:通过动态图像法,测得微米气泡的粒径分布、气泡数量、球形度等信息,用于表征、鉴别微米气泡;通过纳米颗粒跟踪分析技术,测得纳米气泡的粒径分布、浓度、电位等信息,用于全面表征纳米气泡的性质。关键词:微纳米气泡,动态图像法,纳米颗粒跟踪分析技术气泡是生活中最常见的现象之一。生活中经常能观察到气泡上浮、破裂的现象,这些气泡都是我们肉眼能观察到的大气泡。而实际上,水中除了我们肉眼可见的这些气泡之外,还存在更小尺度的气泡—微纳米气泡。微纳米气泡与肉眼可见的大气泡在粒度、稳定性、比表面积等方面存在很大差异。微纳米气泡的主要特点包括比表面积大、表面带电荷、自身增压溶解、上升速度慢、产生大量自由基等。在化学反应中,微纳米气泡可用于增加气体与液体的接触面积,促进反应发生。由于微纳米气泡体积小,在水中上升速度慢、存在时间长,也可以用在无土栽培及水产养殖中,用于水体杀菌、增加水体供氧等。微纳米气泡在破裂时还能产生大量自由基,可用于降解常规条件下难以降解的污染物,在工业和环境领域也有很高的环保应用价值。此外,微纳米气泡在清洗工业器件的微孔表面、深层清洁皮肤等方面也有不可替代的应用价值。正是因为有如此广泛的实际应用价值,微纳米气泡目前已成为一个非常有前景的研究热点。在微纳米气泡的实际生产过程中,不同的气泡发生器、不同的气泡发生条件(压力、温度等)、不同气体等因素,都会直接影响微纳米气泡的粒径分布、浓度以及电位稳定性,进而影响微纳米气泡的质量评估。而微纳米气泡的实际应用价值,也与其粒径、浓度、zeta电位等紧密相关。因此,在微纳米气泡制备及应用过程中,准确地检测微纳米气泡的粒径、浓度和zeta电位,是十分必要的。一、微米气泡的检测针对微米级的较大气泡,可以通过动态图像法进行最直接的拍摄与检测。动态图像法是利用光源直接照射流经检测区的颗粒,并利用CCD检测器获取所有颗粒的实时投影。它可以实时统计所有流经的颗粒的粒径和数量,可以通过颗粒的球形度、长宽比等参数来区分微米气泡与其他类型的物质,还可以通过气泡粒径与浓度的区别来探究不同因素对微米气泡的影响,评估微米气泡的实际应用价值。图1.动态图像法的测试原理图2.动态图像法检测视野下的微米气泡我们知道,气泡粒径受气泡发生条件的影响很大。但当我们改变气泡发生压力时,会发现气泡的粒径并非一直随气泡发生压力的变化而变化。我们在实际测试中,尝试不断增大气泡发生压力,再通过动态图像法实时统计气泡的发生效果,得到如下的数据:我们发现,当气泡发生压力从0.1MPa增加到0.3MPa时,气泡的粒径(D50%)在不断减小,气泡的数量也在迅速增多;但当气泡发生压力从0.3MPa继续增大时,气泡的粒径和数量一直处于稳定水平,不再有明显的变化。从测定zui优气泡发生压力值的角度来看,0.3MPa是实际应用效果ZJ的压力值。图3.微米气泡的离散度分析及球形度分析借助动态图像法,我们还可以从球形度、长宽比等角度,鉴别非气泡类颗粒,统计非气泡颗粒的数目,进一步评估微米气泡测试数据的可靠性。二、纳米气泡的检测纳米气泡的粒径很小,其在水溶液中的布朗运动速率也很快。所以,纳米气泡很难直接通过图像法进行测试。此时,我们借助纳米颗粒追踪分析技术(Nano-particle Tracking Analysis,NTA)来检测纳米气泡。纳米颗粒追踪分析技术可直接检测纳米气泡在水中的布朗运动轨迹与速率,实时统计检测视野内的纳米气泡数量,由此计算出纳米气泡的粒径和浓度;并通过对气泡溶液施加电场,获取纳米气泡在电场中的电泳运动方向和运动速率,直接计算出纳米气泡的zeta电位,有助于评估气泡稳定性。图4.纳米颗粒追踪分析技术检测视野下的纳米颗粒为了检测不同气泡发生条件引起的纳米气泡差异,我们选用某品牌气泡发生器,利用空气在水介质中制备纳米气泡样品。该气泡发生器有FB1和FB2两个挡位,FB2挡位下水流速度更快。我们分别检测了在不同挡位(FB1和FB2)、不同温度(25℃和45℃)下所产生的纳米气泡的粒径、浓度和zeta电位信息,检测结果如下:由以上结果可以看出:(1)25℃下,由不同气泡发生器挡位得到的纳米气泡样品,其浓度比较接近,均在106个/ml水平;zeta电位值均为负值;但FB2挡位下得到的纳米气泡的粒径更小,zeta电位JD值更低一些。这可能与FB2挡位下水的高流速、高剪切力有关。(2)45℃下,不同气泡发生器挡位得到的纳米气泡,其浓度也比较接近,均在107个/ml水平,比25℃下得到的纳米气泡的浓度高得多;粒径一致,均在126nm左右,比25℃下得到的纳米气泡的粒径值都要小;zeta电位均为正值,且数值也更接近。25℃下产生的纳米气泡的zeta电位为负值,45℃下产生的纳米气泡的zeta电位为正值。由此可以看到,温度对此次测试中纳米气泡的zeta电位影响非常大。图5.不同气泡发生条件下得到的纳米气泡的粒径分布由上图可以更直观地看出,不同条件下得到的纳米气泡样品在粒径和浓度上的差别。微纳米气泡具有非常广泛的实际应用价值,但气泡发生条件对微纳米气泡的影响很大。如何优化微纳米气泡发生条件,如何快速地确认微纳米气泡的实际发生效果,都依赖于准确可靠的微纳米气泡检测技术。我们通过动态图像法和纳米颗粒跟踪分析技术,从不同的角度表征微纳米气泡,实现对微纳米气泡的准确检测,为微纳米气泡相关的研究工作提供可靠的参考。
617人看过
- 2018-07-19 04:44:01微纳米气泡技术的特性是怎样的?
344人看过
- 2023-06-14 13:08:58基于纳米微滴的试剂注入到油包水液滴中
- FluoSurf (2%, w/w) in HFE 7500 含氟表面活性剂 Zhu B, Du Z, Dai Y, Kitguchi T, Behrens S, Seelig B. Nanodroplet-based reagent delivery into water-in-fluorinated-oil droplets. ChemRxiv. Cambridge: Cambridge Open Engage; 2023; 体外区隔化是一种生成油包水微滴的技术,用于建立基因型(DNA信息)-表型(生物分子功能)连锁,这是许多生物学应用所需要的。近年来,由于氟化油具有较好的生物相容性,在微滴制造中得到了越来越广泛的应用。然而,需要在含氟水的油微滴中添加试剂来进行多步反应是困难的。芯片上的微滴操作通常用于此目的,但它可能遇到一些技术问题,即低通量或将试剂递送到不同的微滴中有时间延迟。因此,我们评估了采用基于纳米液滴的方法使用铜离子和中等大小的肽(2 kDa)分子来解决这些问题的可行性。
90人看过
- 2024-12-27 13:45:02石英晶体微天平教程
- 石英晶体微天平教程:探索精确质量测量的应用与原理 石英晶体微天平(Quartz Crystal Microbalance, QCM)作为一种高度敏感的质量传感器,广泛应用于物理、化学、生物学等多个领域,尤其在纳米技术、材料科学以及环境监测中具有重要地位。本文将深入探讨石英晶体微天平的工作原理、使用方法以及它在各个科研领域中的应用,帮助读者更好地理解这一仪器的功能与技术优势。 石英晶体微天平的工作原理 石英晶体微天平的核心原理基于压电效应。其工作方式是通过在石英晶体表面涂覆电极,当施加电压时,石英晶体发生微小的机械振动。根据压电效应,这种振动频率与晶体表面吸附的物质质量密切相关。当样品在晶体表面发生沉积时,质量增加会导致晶体的振动频率发生微小变化。通过测量频率的变化,QCM可以精确地检测到沉积物的质量变化,从而实现超高灵敏度的质量检测。 石英晶体微天平的主要构成 QCM的基本构成包括石英晶体、电极以及振荡器等组成部分。石英晶体通常采用AT切或SC切的方式切割,以确保其具有稳定的振动频率。电极被安置在晶体的两面,用于施加电场和接收电信号。通过这些组件的协同作用,QCM能够在高精度范围内测量微小质量的变化。 石英晶体微天平的应用领域 生物传感器 石英晶体微天平在生物学领域的应用尤为广泛。利用其高灵敏度,QCM可以用于检测抗原与抗体的结合反应、DNA分子检测、细胞黏附等生物分子交互作用的研究。其无需标签、非侵入性的特点,使得QCM成为生物传感器领域中不可或缺的工具。 纳米材料研究 在纳米技术领域,QCM可以用于研究薄膜的生长过程、分子层的沉积速率以及纳米材料的表面性质等。由于其极高的质量分辨率,QCM能够对纳米级别的质量变化进行实时监测,帮助研究人员精确控制和优化纳米材料的制备过程。 化学反应监测 在化学领域,QCM常用于研究表面化学反应,尤其是与催化剂反应的过程。通过监测反应过程中质量的变化,研究人员能够获得关于反应机制的重要信息,并且能够在催化剂的开发和优化中提供数据支持。 环境监测 QCM也可用于环境监测,特别是在气体传感器方面。石英晶体微天平能够检测空气中污染物的微小浓度变化,帮助环保部门及时掌握环境质量变化情况,尤其适用于检测有害气体和气味的监控。 石英晶体微天平的使用方法与技巧 使用石英晶体微天平时,首先需要选择适当的晶体类型及频率范围。根据实验的要求,可以选择不同尺寸和不同频率的石英晶体。要确保实验环境的温度、湿度等因素对频率变化的影响小,以提高测试结果的准确性。每次实验前,应对石英晶体进行清洁处理,去除表面的污染物,以确保测量数据的可靠性。 在实际操作中,用户需要通过外部仪器对晶体的振动频率进行监控。当晶体表面吸附的物质增加时,频率会发生变化,记录频率变化量即可获得沉积物的质量变化。需要注意的是,频率变化的线性范围和灵敏度受到多种因素的影响,实验设计时需要充分考虑这些因素。 总结 石英晶体微天平作为一种高精度的质量测量工具,其在各个科研领域中的应用前景广阔。通过深入理解QCM的工作原理和使用技巧,科研人员能够更好地运用这一工具进行高精度质量检测与分析。无论是在纳米技术、材料科学,还是在生物医学和环境监测领域,石英晶体微天平都具有极大的应用潜力和科学价值。掌握QCM的使用方法,并根据不同的应用需求进行优化设计,是提高实验精度和效率的关键。
21人看过
- 2024-12-26 09:30:13石英晶体微天平原理
- 石英晶体微天平原理 石英晶体微天平(QCM,Quartz Crystal Microbalance)是一种高精度的质量测量仪器,广泛应用于物理学、化学、材料科学以及生物传感等领域。其原理基于石英晶体的压电效应,通过测量晶体振荡频率的变化来间接推算质量的变化。石英晶体微天平因其高灵敏度、非破坏性和实时检测等特点,已成为分析薄膜沉积、分子吸附、气体检测以及生物分子相互作用研究等领域的重要工具。本文将深入探讨石英晶体微天平的工作原理、应用以及相关的研究进展。 石英晶体微天平的工作原理 石英晶体微天平的核心原理是利用石英晶体的压电特性。当电压施加到石英晶体上时,晶体会发生机械变形,反之,当晶体受到机械力时,便会产生电压。在微天平的应用中,石英晶体通常被切割成特定形状,并以一定的频率进行振荡。当晶体表面附着上物质时,物质的质量增加导致晶体的振荡频率发生变化。 QCM的操作通常涉及将石英晶体置于电场中,并通过恒定电压激发其振荡。根据声波传播原理,石英晶体振荡的频率与其表面附着的质量呈线性关系。当外界物质(如气体、液体或生物分子)沉积在晶体表面时,晶体的共振频率会发生微小变化。通过精确测量这些频率变化,可以推算出附着物质的质量变化。 频率变化与质量的关系 石英晶体微天平的精度非常高,通常可以检测到极微小的质量变化。根据瑞基—赫兹(Rudolf Hertz)方程,频率变化与质量变化之间的关系可以通过以下公式表示: [ \Delta f = -\frac{C \Delta m}{f_0^2} ] 其中,(\Delta f)是频率变化,(\Delta m)是附着物质的质量变化,(f_0)是石英晶体的共振频率,C是一个常数,取决于晶体的几何形状和振动模式。由此可见,晶体的共振频率变化与附着的物质质量成正比,这使得QCM成为一种高效且灵敏的质量测量工具。 石英晶体微天平的应用 石英晶体微天平的应用领域极为广泛。在材料科学中,QCM被用于研究薄膜的沉积过程和厚度测量。在生物传感器领域,QCM能够实时监测分子间的相互作用,如抗原—抗体反应、DNA杂交等。QCM还被广泛应用于气体传感器、化学反应监测以及环境检测等领域。 在生物传感领域,QCM具有无标记、高灵敏度和高选择性等优点,能够对极低浓度的生物分子进行实时检测。通过观察频率的变化,可以定量分析分子间的结合与解离过程,为生物分子互动研究提供了强大的工具。例如,在癌症标志物检测、病原菌识别以及药物筛选等方面,QCM都展示了其独特的优势。 研究进展与挑战 尽管石英晶体微天平在多个领域展现出优异的性能,但仍面临一些挑战。例如,QCM对温度、湿度等环境因素敏感,这可能会影响测量结果的准确性。近年来,研究者们提出了许多改进方案,如通过表面修饰、优化测量方法等手段来提高其抗干扰能力。新型材料和新型传感器的开发也是QCM研究的热点之一。未来,随着技术的不断进步,石英晶体微天平在更广泛的领域中将发挥更重要的作用。 结语 石英晶体微天平作为一种先进的质量检测工具,凭借其高灵敏度和实时监测能力,在各个科研领域发挥着重要作用。通过不断的技术创新和应用拓展,QCM的测量精度和适应性将得到进一步提升,推动其在生物传感、环境监测等领域的应用前景。
43人看过