- 2025-05-13 06:33:05多光谱成像光谱仪
- 多光谱成像光谱仪是一种专业用于获取物质光谱图像的高精度仪器。它能够在多个光谱波段上同时成像,通过捕捉和分析不同波段下的光谱信息,准确、快速地测定物质的成分、结构等特性。该仪器具有光谱分辨率高、成像速度快、测量准确度高等特点,广泛应用于遥感探测、生物医学、环境监测等领域。通过多光谱成像光谱仪的测试,可深入了解物质的光谱特性及空间分布。
资源:6106个 浏览:55次展开
多光谱成像光谱仪相关内容
多光谱成像光谱仪产品
产品名称
所在地
价格
供应商
咨询

- UHD 219 多光谱成像光谱仪
- 国外 欧洲
- 面议
-
北京安洲科技有限公司
售全国
- 我要询价 联系方式

- UHD 128/137多光谱成像光谱仪
- 国外 欧洲
- 面议
-
北京安洲科技有限公司
售全国
- 我要询价 联系方式

- IsoPlane成像光谱仪
- 国外 美洲
- 面议
-
阿美特克商贸(上海)有限公司
售全国
- 我要询价 联系方式

- ImSpector高光谱成像光谱仪
- 国外 欧洲
- 面议
-
北京易科泰生态技术有限公司
售全国
- 我要询价 联系方式

- HORIBA 成像光谱仪 iHR320/550
- 国外 亚洲
- 面议
-
HORIBA(中国)
售全国
- 我要询价 联系方式
多光谱成像光谱仪问答
- 2025-02-17 14:30:16多光谱光声断层扫描成像原理是什么?
- 多光谱光声断层扫描成像:开创医学影像的新篇章 多光谱光声断层扫描成像(MSPAT)是一项革命性的成像技术,结合了光学和超声波的优势,能够提供高分辨率的图像,且具有较高的深度穿透能力。随着技术的不断发展,MSPAT在医学成像、癌症检测、脑部研究等领域展现了广泛的应用潜力。本篇文章将深入探讨多光谱光声断层扫描成像的原理、优势及其在临床诊断中的应用。 光声效应与成像原理 多光谱光声断层扫描成像的核心原理是基于光声效应。当激光光源照射到组织中时,组织中的水分和血红蛋白会吸收特定波长的光,导致局部温度升高并产生快速的热膨胀。这个过程会激发声波的产生,声波的强度和频率可以通过超声探头进行探测,从而反映出组织的内部结构和成分。 多光谱光声断层扫描成像之所以能称为“多光谱”,是因为它使用了不同波长的激光源,从而可以获得组织的不同光学特性。这种技术的优势在于,它能够获取更丰富的组织信息,识别不同的组织成分,如血管、肿瘤以及其他病变区域。 多光谱光声断层扫描成像的优势 相比传统的成像技术,如CT(计算机断层扫描)和MRI(磁共振成像),多光谱光声断层扫描成像具有独特的优势。MSPAT能够以较高的分辨率提供结构性图像,这在微小病变的早期发现上至关重要。尤其是在肿瘤检测方面,MSPAT能有效区分肿瘤组织和健康组织,有助于提高肿瘤早期筛查的准确性。 MSPAT能够在不使用放射线的情况下,获得丰富的血管信息。传统的成像技术需要注射对比剂来突出血管的显现,而MSPAT则通过不同波长的激光照射,可以无创性地提供关于血管的详细信息,且能够深入体内组织层次,帮助医生更好地评估肿瘤的血供状况或病变的演变过程。 临床应用前景 在医学领域,MSPAT已经展现出巨大的应用潜力,尤其在肿瘤检测和神经系统疾病的诊断中。通过对肿瘤组织的精确成像,医生可以更加准确地评估肿瘤的大小、位置以及血供情况,从而为方案的制定提供重要依据。MSPAT也在脑血管病变、脑部肿瘤等神经系统疾病的研究中,帮助医生获取更加直观的病变图像,辅助早期诊断和治果评估。 未来,随着技术的不断进步,MSPAT的应用范围将进一步扩展。尤其是与人工智能结合的进展,MSPAT的图像分析将更加,能够帮助医生在极短的时间内做出更加科学的诊断决策,极大地提高医率和诊断准确率。 结论 多光谱光声断层扫描成像作为一项创新的成像技术,凭借其高分辨率、无创性和多波长成像的优势,正在医学影像领域中占据越来越重要的地位。随着技术的不断发展,MSPAT将在肿瘤筛查、脑部疾病诊断等方面展现出更加广泛的应用潜力,并有望成为未来医学影像的主流技术之一。
269人看过
- 2023-04-08 09:13:40Spider2000+便携式二维拉曼成像光谱仪
- 1产品简介Spider2000+便携式二维拉曼成像光谱仪采用如海光电自主研发的科研级微型共焦拉曼光谱仪RMS2000作为拉曼内芯,从而使得它拥有高灵敏度、高分辨率、强穿透能力以及较好的抑制荧光干扰能力。优化的光路设计可使得拉曼激光光束在通过长焦显微物镜后光斑可达到微米级别,可精确采集微米级样品的拉曼光谱。此外,仪器采用高精度二维自动化移动平台,可实现自动扫描mapping成像功能。Spider2000+便携式二维显微拉曼成像光谱仪配备专门为拉曼系统设计的长焦显微物镜,Spider2000+增加上光源反射式照明成像,可通过CCD相机获得样品清晰的显微明场成像,激光经过物镜后光斑接近衍射极限,克服了普通拉曼系统中收集拉曼信号的焦面稍高于或稍低于实际焦面的问题,并且独特的共焦式设计使得样品荧光信号得到有效抑制,从而提高拉曼光谱质量。2产品特点高灵敏度:最低可检测到0.3%浓度无水乙醇特征峰。高分辨率:6cm-1@25μm狭缝。强大软件功能:支持mapping自动扫描、数据库识别等功能。高品质物镜,光斑可达微米级。高精度二维自动化平台。3应用领域4产品规格
287人看过
- 2023-05-26 10:20:02FluorCam-Pro植物多光谱荧光成像系统
- FluorCam-Pro植物多光谱荧光成像系统是FluorCam叶绿素荧光成像技术的最 新高级扩展产品。此系统既可用于PAM脉冲调制式叶绿素荧光动态成像分析,又可用于UV紫外光对植物叶片激发产生的多光谱荧光成像测量分析,还可选配滤波器组对GFP、RFP、YFP、SYBR Green等荧光蛋白和荧光染料进行稳态荧光成像测量。测量对象包括叶片、果实、花朵、整株拟南芥或其他小型植株、苔藓、微藻、大型藻类乃至特定的动物样品。应用领域:植物光合生理生态植物逆境胁迫生理与易感性植物初级代谢与次级代谢植物表型组学成像分析(Phenotyping)作物遗传育种与抗性筛选种子萌发与活力监测转基因植株筛选功能特点:多激发光-多光谱荧光成像技术:通过两种以上不同波长的光源激发植物样品中不同的发色团发出荧光并进行成像检测,即为多激发光多光谱荧光成像技术。植物的多光谱荧光主要包括叶绿素荧光、UV紫外光激发多光谱荧光和荧光蛋白荧光FluorCam-Pro无需更换任何配件即可同步实现多激发光-多光谱荧光成像功能:PAM脉冲调制式叶绿素荧光成像紫外激发F440、F520、F690、F740多光谱荧光成像GFP、RFP、YFP等常用荧光蛋白成像可根据用户需要定制荧光蛋白或荧光染料成像,如BFP、CFP、SYBR Green、DAPI等可对黄酮、花青素含量进行定量测量可进行自动重复成像测量和无人值守监测,可设置实验程序(Protocols)自动循环成像测量,成像测量数据自动按时间日期存入计算机(带时间戳)测量样品为各种活体植物样品,包括叶片、花卉、果实、整株拟南芥或其他小型植物、微藻(包括液滴、多孔板、固体培养基)及大型藻类等技术指标:一体式设计,自带暗适应箱体最 佳成像面积:20×20cm测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm ,Fv',Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数;紫外激发多光谱荧光成像参数:F440、F520、F690、F740;荧光蛋白荧光强度参数Ft;每项参数均可显示对应二维荧光彩色图像。并可测量计算黄酮醇指数Flavonol Index,、花青素指数Anthocyanin Index。具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑1)Fv/Fm:测量参数包括Fo,Fm,Fv,QY等叶绿素荧光参数2)Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等叶绿素荧光参数3)Quenching荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,ΦII,NPQ,Qp,Rfd,qL等50多个叶绿素荧光参数4)Light Curve光响应曲线:不同光强梯度条件下Fo,Fm,QY,QY_Ln,ETR等叶绿素荧光参数5)MultiColor紫外激发多光谱荧光成像(选配)6)FPs荧光蛋白成像:GFP、YFP、RFP、BFP等(选配)荧光激发光源组:全LED光源,包括620nm红光、5700K冷白光、735nm远红光、365nm紫外光,445nm品蓝光,470nm蓝光,505nm青光,530nm绿光,590nm琥珀色光等高分辨率CCD相机1)图像分辨率:1360×1024像素2)时间分辨率:在最 高图像分辨率下可达每秒20帧具备7位滤波轮,标配叶绿素荧光滤波器,根据用户需要可定制紫外激发多光谱荧光和GFP、RFP、YFP、BFP等荧光蛋白专用滤波器FluorCam叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单自动测量分析功能:可设置一个实验程序(Protocol)自动无人值守循环成像测量,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机(带时间戳)成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(>1000)输出结果:高时间解析度荧光动态图、荧光动态变化视频、荧光参数Excel文件、直方图、不同参数成像图、不同ROI的荧光参数列表等应用案例:1.抗病毒基因研究:叶绿素荧光成像与GFP成像联合分析法国国家农业科学研究院一直致力于马铃薯y病毒组的抗病基因研究,通过不同基因编辑处理方法,验证抗病毒分子机制。相关研究中,研究人员利用FluorCam多光谱荧光成像系统的GFP荧光蛋白成像功能,定量分析感染面积与病毒积累量,从而直观地反映了不同基因功能对拟南芥病毒抗性的影响。同时,叶绿素荧光成像则反映病毒对光合系统的损伤,同步提供植物的光合表型信息。参考文献:Zafirov D, et al. 2021. When a knockout is an Achilles' heel: Resistance to one potyvirus species triggers hypersusceptibility to another one in Arabidopsis thaliana. Mol Plant Pathol. 22: 334–347Bastet A, et al. 2019. Mimicking natural polymorphism in eIF4E by CRISPR‐Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnology Journal 17: 1736–1750Bastet A, et al. 2018. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnology Journal: 1–132.不同颜色凌霄叶片的叶绿素荧光与紫外激发多光谱荧光成像分析(易科泰EcoTech®实验室)产地:欧洲
679人看过
- 2024-11-21 15:29:12原子吸收光谱仪结构,原子吸收光谱仪结构示意图
- 原子吸收光谱仪结构解析:科学与技术的结合原子吸收光谱仪作为一种先进的分析仪器,在元素定量分析中具有重要地位。它通过原子对特定波长光的吸收来测定物质中的元素含量,广泛应用于环境监测、医学检测、食品安全等领域。本文将详细介绍原子吸收光谱仪的结构,包括其主要组成部分及功能特点,为读者更深入地了解该仪器的原理与应用提供帮助。一、原子吸收光谱仪的核心部件光源系统光源是原子吸收光谱仪的核心部分之一。通常使用中空阴极灯(HCL)或放电灯作为光源,它们能够发射特定元素的特征光谱。这种光源具有高强度和高稳定性,确保了检测结果的准确性和灵敏度。原子化器原子化器是实现样品转化为自由原子的关键装置,常见的原子化方式包括火焰原子化和石墨炉原子化。火焰原子化:通过燃烧混合气体将样品转化为自由原子,适用于较高浓度样品的分析。石墨炉原子化:利用高温石墨管进行加热蒸发,适合痕量元素的检测,具有更高的灵敏度。分光系统分光系统的作用是将光源发出的光分解为不同波长的单色光,并选择被分析元素对应的特征波长。这部分通常由单色器或光栅完成,能有效排除背景干扰,提高检测的选择性。检测器检测器的功能是接收通过样品的特定波长光,并将其转换为电信号。常见的检测器有光电倍增管(PMT),以其高灵敏度和低噪声的特性在仪器中广泛使用。数据处理系统数据处理系统是现代光谱仪的重要组成部分,主要通过计算机将检测到的电信号转化为可视化的定量结果,同时支持数据存储和分析功能。它为复杂样品的快速测定提供了强大支持。二、各部件的协同作用原子吸收光谱仪的工作流程高度依赖于上述部件的紧密协作。光源发出的特征光经分光系统调节后穿过原子化器中的样品,部分光被样品中的原子吸收。未被吸收的光由检测器接收,并通过数据处理系统计算出样品中目标元素的浓度。三、结构优化对性能的影响原子吸收光谱仪结构的优化直接决定其性能表现。例如,高性能的分光系统能够减少干扰光的影响,提高测定的准确性;高灵敏度的检测器则可扩展仪器的分析范围,尤其是在痕量元素检测中。近年来,随着技术的发展,一些仪器开始集成自动进样、背景校正等功能,为用户提供更加便捷的操作体验。四、结语原子吸收光谱仪以其精确、高效的分析能力,成为科学研究和生产领域不可或缺的工具。其结构设计充分体现了科学与技术的结合,每一部分都为提升检测的准确性和灵敏度而服务。
174人看过
- 2024-12-27 13:30:02稳态瞬态荧光光谱仪商家,稳态瞬态荧光光谱仪价格
- 稳态瞬态荧光光谱仪商家——市场需求与技术发展趋势 在现代科学研究和工业应用中,稳态瞬态荧光光谱仪作为一款重要的分析仪器,广泛应用于生物医学、环境监测、材料科学等领域。随着科技的不断进步,荧光光谱仪的技术也日趋成熟,市场需求逐渐增加,特别是在对精确度和灵敏度要求日益提高的今天。本文将深入探讨稳态瞬态荧光光谱仪商家的市场定位、技术优势及未来发展方向,为相关行业的研究人员和购买者提供有价值的参考。 稳态与瞬态荧光光谱仪的定义与差异 稳态荧光光谱仪和瞬态荧光光谱仪是基于荧光现象的两种不同检测技术。稳态荧光光谱仪主要用于检测样品在特定激发光源照射下的稳定荧光发射特征,它可以提供样品在稳定状态下的荧光光谱信息。相比之下,瞬态荧光光谱仪则关注的是荧光发射随时间变化的动态特性,能够测量样品在激发后短暂时间内的荧光衰减过程,这对于深入分析分子行为和结构特征具有重要意义。 两者虽然有不同的应用侧,但随着技术的进步,很多现代荧光光谱仪集成了稳态和瞬态两种功能,能够为用户提供更加全面的分析数据。 市场需求与商家定位 随着生命科学、纳米技术、化学工程等领域的不断拓展,稳态瞬态荧光光谱仪的市场需求日益增长。在生命科学领域,研究人员使用荧光光谱仪研究分子间的相互作用、细胞内的信号传导以及分子标记物的追踪。在环境监测领域,该设备可用于分析水质、空气和土壤中微量物质的浓度变化。在材料科学中,荧光光谱仪为研究新型功能材料的光学特性提供了重要的技术支持。 针对不同的市场需求,稳态瞬态荧光光谱仪商家必须定位自己的产品特色和竞争优势。高灵敏度、低噪声、快速响应、宽波长范围等技术指标成为消费者选购的关键因素。针对不同行业的特定需求,商家应提供定制化的解决方案,进一步提升市场竞争力。 技术优势与发展趋势 稳态瞬态荧光光谱仪的技术进步不仅体现在性能上的提升,还在于应用范围的不断拓展。例如,随着探测器技术的不断完善,荧光光谱仪的分辨率和灵敏度得到了显著提高,能够检测到更加微弱的荧光信号。多功能集成、自动化操作、数据分析软件的更新换代也是目前市场上的发展趋势。 从未来发展来看,随着人工智能、数据科学与光学技术的融合,荧光光谱仪将更加智能化和自动化。商家将提供更多基于大数据分析的定制化服务,利用AI算法对荧光信号进行实时分析和处理,提升实验效率并减少人为误差。 结语 稳态瞬态荧光光谱仪作为一种高效、精确的分析仪器,在多个科研和工业领域中具有广泛的应用前景。商家在竞争激烈的市场中应不断提升产品性能,紧跟技术发展的潮流,满足不同用户的需求,推动行业的技术进步与创新。随着智能化技术的引入,未来的稳态瞬态荧光光谱仪将更加高效、,成为科研和工业领域中不可或缺的重要工具。
113人看过

