仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

技术中心

当前位置:仪器网>技术中心> 应用方案> 正文

突破同步辐射限制,从Angew/JACS看easyXAFS如

来源:清砥量子科学仪器(北京)有限公司 更新时间:2023-06-16 22:02:34 阅读量:315

    理解材料的构-效关系一直是电池领域的关键课题。随着先进表征技术的发展,研究人员能够更加准确、便捷地获得材料的物理化学性质,从而促进高效、稳定的电池材料的开发。


    X射线发射谱(XES,X-ray emission spectroscopy)是一种通过探测特征X射线荧光来分析元素性质的技术,可以判定原子的氧化态,自旋态,共价,质子化状态,配体环境等信息。近年来,有研究表明元素自旋态可影响材料的电化学性质。作为表征元素自旋态的有效手段,XES越来越多地出现在电池研究的相关报道中。然而,由于XES技术通常依赖于同步辐射X射线光源,极大地限制了XES技术在各领域的广泛应用。针对于此,美国easyXAFS设计研发了无需同步辐射光源台式X射线吸收精细结构谱仪-XAFS/XES,可在常规实验室环境中测量X射线吸收精细结构谱和X射线发射谱,得到可以媲美同步辐射水平的谱图,实现对元素的定性和定量分析、价态分析、配位结构解析等。


     本文将从AngewJACS高水平文献出发,阐述easyXAFS台式X射线吸收谱仪系统如何助力电池材料机理研究。

 

苏州大学 Angew


     苏州大学张亮团队针对Li-S电池反应体系,以尖晶石氧化物为基础,构筑了吸附-催化双活性位点,并通过自旋调控形成电荷传输通道[1]。作者成功合成了富含MnOh-O-CoTd结构单元的三金属尖晶石氧化物纳米盒(CoFeMnO YSNCs),处于四面体中心的高自旋CoTd以金属-硫共价键的形式强力地锚定多硫化物,处于八面体中心的MnOh能诱发轨道特异性催化。同时,利用金属离子在特定配位构型中的电子结构及自旋态,MnOh-O-CoTd中形成了畅通的自旋路径,保证了双活性位点之间的电子传递。


    作者利用easyXAFS台式X射线吸收精细结构谱仪XES Kβ谱线验证CoTd的自旋态(图1)。在CoFeO SSNC样品中,Kβ1,3-Kβ′分裂难以区分,证明其中低自旋的八面体中心Co3+Oh占主导地位。与之相比,CoFeMnO YSNC的Kβ′特征增强,证实其中更多的Co3+Oh被驱动到四面体配位中心Td,并转换为高自旋状态。

图1. 不同样品的Co Kβ XES谱图

 

    由于低自旋Co3+Oh的固有局部电子结构与空的eg轨道,具有CoOh-O-CoTd结构单元的Co3O4显示出相对较低的电导率(图2a)。相反,当Mn3+被引入Oh位点时,Mn3+Oh中部分占据的eg轨道通过桥接O2-带来强烈的MnOh-O-CoTd超交换相互作用,构建了一个畅通无阻的自旋通道(图2b)。如图2c所示,自旋极化电子在费米能级附近具有自旋态,通过离域电子表现出半金属特性。双活性位点间通过自旋极化电子形成有效的电荷传输通道,促进多硫化锂在电极表面发生连续的吸附-催化转化过程(图2d),实现了高性能的Li-S电池。该项研究以“Cooperative Catalysis of Polysulfides in Lithium–Sulfur Batteries through Adsorption Competition by Tuning Cationic Geometric Configuration of Dual-active Sites in Spinel Oxides”为题,发表于国际高水平期刊《Angewandte Chemie International Edition》。


2023_6_12_2062279161.png

图2. (a) Co3+Oh和相应的CoOh-O-CoTd自旋通道的轨道分裂图示。(b) Mn3+Oh和相应的MnOh-O-CoTd自旋通道的轨道分裂图示。(c) MnOh掺杂Co3O4的自旋极化示意图。(d) 多硫化锂在CoFeMnO YSNCs表面连续“吸附-转化”过程的机理示意图。

 

中国科学院 JACS


    中国科学院的刘向峰团队利用自旋态调控设计出稳定的4.6V高压LiCoO2正极材料,有效提升了电池容量和倍率性能,并实现了优异的充放电循环稳定性[2]。高压LiCoO2由于其较高的理论容量而备受研究者关注,然而高电压会导致过量的O→Co电荷转移,使晶格O2–过度氧化并释放O2,造成结构退化,容量衰减,严重限制其实际应用。本文的作者通过引入高自旋的Co有效解决了这一问题,其机理如图3a所示。对于低自旋LiCoO2而言,Co t2g和O 2p轨道之间高度重叠。充电后,首先从t2g中提取电子,将低自旋Co3+(t2g6 eg0)氧化为Co4+(t2g5 eg0)。当一半的Co3+阳离子被氧化成Co4+时,费米能级达到O 2p态。随着进一步氧化,O→Co电荷转移被触发,从而将Co4+还原为Co3+甚至Co0+,同时将O2−氧化为O2。这一过程使O-O 键缩短,Co-O键变长,造成晶格畸变。充放电循环后,由于不可逆的化学反应和晶格变化,材料的电子结构无法恢复到原始状态。对于高自旋LiCoO2,Co t2g和O 2p之间的重叠减少。纳米带状网络结构产生的晶格应力场抑制了脱锂时的结构变化。这些特性抑制了费米能级在高电压下接近O 2p,并从根本上解决了O → Co电荷转移问题。因此,充放电循环后,高自旋LiCoO2的能带结构可恢复到初始状态。


    实验上,作者成功合成出高自旋LiCoO2 (HS-LCO)与低自旋LiCoO2(LS-LCO),并利用easyXAFS台式X射线吸收精细结构谱仪XES辅助表征(图3b)。在长时间电池循环测试后,HS-LCO中的Co仍然保持高自旋态。该项研究以“Reducing Co/O Band Overlap through Spin State Modulation for Stabilized High Capability of 4.6 V LiCoO2”为题,发表在国际顶级期刊《Journal of the American Chemical Society》上。


2023_6_12_2106942820.png

图3. (a) LS-LCO和HS-LCO中自旋态对能带结构的影响及氧化还原机理示意图。(b) LS-LCO和HS-LCO原始样品及循环测试后的HS-LCO电极的XES谱图。

 

    上述两篇电池前沿研究论文的XES数据均由美国easyXAFS公司研发的台式X射线吸收谱仪系统easyXAFS300+ (图4)测得。该装置得益于特有的单色器设计,无需同步辐射光源,可以在常规实验室环境中实现X射线吸精细结构谱(XAFS)和XES双功能测试,二者相辅相成,信息互补,用于获取全轨道的电子结构以及原子结构信息。该台式设备帮助广大科研人员摆脱对同步辐射X射线光源的依赖,极大地提高了XES和XAFS表征技术在能源、催化、环境等各领域的大范围应用。

图4. 美国台式X射线吸收谱仪系统easyXAFS300+

 

【参考文献】

[1] Cooperative Catalysis of Polysulfides in Lithium–Sulfur Batteries through Adsorption Competition by Tuning Cationic Geometric Configuration of Dual-active Sites in Spinel Oxides. Angew. Chem. Int. Ed., DOI: https://doi.org/10.1002/anie.202216286

[2] Reducing Co/O Band Overlap through Spin State Modulation for Stabilized High Capability of 4.6 V LiCoO2. J. Am. Chem. Soc., DOI: https://doi.org/10.1021/jacs.3c01128

标签:   XAFS   XES X射线发射谱

参与评论

全部评论(0条)

相关产品推荐(★较多用户关注☆)
看了该资讯的人还看了
你可能还想看
  • 技术
  • 资讯
  • 百科
  • 应用
  • 同步热重分析仪原理
    这种分析方法为材料科学、化学工程、环境分析等领域提供了深刻的热行为理解,广泛应用于高分子材料、合金、陶瓷及复合材料的研究中。本文将详细探讨同步热重分析仪的工作原理、主要应用及其在科研和工业中的重要性。
    2025-10-22124阅读 热重分析仪
  • 同步脉冲发生器原理
    它主要用于产生稳定、的脉冲信号,与系统中的其他设备同步,从而确保系统的正常运行和数据的一致性。本文将详细探讨同步脉冲发生器的工作原理、关键特性以及在各类应用中的实现方式,帮助读者更好地理解这一电子元件的核心功能与应用场景。
    2025-10-22155阅读 脉冲发生器
  • 同步脉冲发生器的组成
    它主要用于生成与系统时钟同步的脉冲信号,以确保各种电子系统在精确的时间间隔内执行操作。本文将详细探讨同步脉冲发生器的主要组成部分,分析其工作原理,并阐明各组件如何协同工作,以满足高精度和稳定性的需求。
    2025-10-2084阅读 脉冲发生器
  • 辐射巡检仪原理
    它的主要功能是对辐射源进行实时监测,确保环境安全与人员健康。随着科技的进步和对辐射防护的日益重视,辐射巡检仪的精度和效率也不断提高。本文将详细解析辐射巡检仪的工作原理,介绍其核心功能,并讨论其在实际应用中的重要性。
    2025-10-16101阅读 巡检仪
  • 辐射热传导测试仪使用方法
    通过测量热量传导过程中的辐射变化,用户可以获得所需的温度、热流、热导等关键数据。本文将详细介绍辐射热传导测试仪的使用方法,帮助用户正确操作仪器,确保测试结果的准确性与可靠性。
    2025-10-20122阅读 热传导测试仪
  • 查看更多
相关厂商推荐
  • 品牌
版权与免责声明

①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

关于作者

美国Quantum Design公司是知名科学仪器制造商,其研发生产的一系列磁学测量系统及综合物性测量系统已成为业内先进的测量平台,广泛分布于材料、物理、化学、纳米等研究领域的科研实验室。Quantum量子科学仪器贸易(北京)有限公司(暨Quantum Design中国子公司) 成立于2004年,是美国Quantum Design公司在全设立的诸多子公司之一,在全权负责美国Quantum Design公司本部产品在中国的销售及售后技术支持的同时,还积极 致力于和范围内物理、化学、生物领域的科学仪器制造商进行密切合作,帮助中国市场引进更多范围内的优质设备和技术,助力中国科学家的项目研究和发展。

更多>>ta的最新文章
Nature Materials重要成果!无掩膜光刻直写系统加持,“忆阻器-电池” 架构解锁仿生味觉芯片新可能
免费测!低温 NV 色心扫描成像磁强计,突破磁测量瓶颈,助力高水平期刊发表!
芯片“黑匣子”如何透视?NanoTube 纳米 CT破解先进封装监测难题,30 秒快筛 + 超精细成像!
关注 私信
热点文章
压电纳米发电机赋能柔性电子
PG-1000脉冲发生器在非易失性存储器(NVM)及MOSFET测试的应用
普源数字万用表通断测试功能的优化方案
泰克信号发生器AFG3000在蓝牙/Wi-Fi共存测试中的应用
10死84伤!内蒙古钢厂爆炸敲响警钟,我们该如何守护安全防线?
液相色谱压力异常?一张“故障树”图帮你快速锁定问题根源
从“看到”到“看懂”:液相色谱图隐藏的8个关键信息,90%的人可能忽略了
从“人防”到“技防”:Raythink燧石热像仪赋能森林防火智能升级!
【悟空FUN学】高效液相色谱如何更“高效”?
转载|泰安市生态环境局新泰分局:精准监测赋能科学治水-筑牢水环境保护的“耳目”与“防线”
近期话题
相关产品

在线留言

上传文档或图片,大小不超过10M
换一张?
取消