仪器网-专业分析仪器,检测仪器平台,实验室仪器设备交易网
光谱 红外光谱

红外光谱

推荐访问 光谱_光谱原理|分类_可见光谱_光谱技术应用拉曼光谱_拉曼光谱原理_拉曼光谱检测分析法吸收光谱_原子分子吸收光谱_紫外吸收光谱暗线光谱_明线光谱_暗线光谱物质鉴别光谱分析_光谱分析法原理|分类_发射吸收光谱分析

红外光谱又称分子振动光谱或振转光谱,是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。


红外光谱原理


在有机物分子中,组成化学键或官能团的原子处于不断振动的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射有机物分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。


当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。


因此,红外光谱法本质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。



红外光谱分区


通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~300μm)。


1、近红外光谱


近红外光谱又分为近红外短波(780-1100nm)和近红外长波(1100-2526nm)两个区域。


近红外光谱主要是由于分子震动的非谐振性使分子振动从基态向高能级跃迁时产生的,近红外光谱记录的是分子中单个化学键的基频振动的倍频和和合频信息,在近红外光谱范围内,测量的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。


2、中红外光谱


一般将2.5-25μm的红外波段划为中红外区。中红外光谱是物质的在中红外区的吸收光谱。由于绝大多数有机物和无机物的基频吸收带都出现在中红外区,因此中红外区是研究和应用Z多的区域,积累的资料也Z多,仪器技术Z为成熟。通常所说的红外光谱即指中红外光谱。


由于基频振动是红外活性振动中吸收Z强的振动,所以本区Z适宜进行红外光谱的定性和定量分析。在环境监测中,中红外光谱主要用于有机污染的监测。通常所说的红外吸收光谱,就是指的中红外光谱,该红外区的测定仪器有红外分光光度计、非分散红外光度计和傅立叶变换红外光谱仪等。


3、远红外光谱


远红外光谱是指物质在远红外区的吸收光谱。一般将25-1000μm的红外波段划为远红外区。此区内的吸收谱带主要是气体分子中的纯转动跃迁、振动-转动跃迁和液体与固体中重原子的伸缩振动(如υS-S,γC-Br等)、某些变角振动、骨架振动,以及晶体中的晶格振动所引起的。


由于低频骨架振动能灵敏地反应物质结构的变化,所以对异构体研究特别方便。此外,对于有机金属化合物(包括络合物)、氢键、吸附现象的定量分析,远红外光谱也很有效。在环境分析测试中,远红外光谱区光源能量弱,除非其他波段没有合适的谱带,一般都不在此区内做定量分析。


红外光谱分类


可分为发射光谱和吸收光谱两类。


1、红外发射光谱


物体的红外发射光谱主要决定于物体的温度和化学组成,由于测试比较困难,红外发射光谱只是一种正在发展的新的实验技术,如激光诱导荧光。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。


例如水分子有较宽的吸收峰,所以分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。


2、红外吸收光谱


红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。


含n个原子的分子应有3n-6个简正振动方式;如果是线性分子,只有3n-5个简正振动方式。以非线性三原子分子为例,它的简正振动方式只有三种。在v1和v3振动中,只是化学键的伸长和缩短,称为伸缩振动,而v2的振动方式改变了分子中化学键间的夹角称为变角振动,它们是分子振动的主要方式。分子振动的能量与红外射线的光量子能量正好对应,因此,当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子的振动,而产生红外吸收光谱。


傅里叶变换红外光谱


傅里叶变换红外光谱法是通过测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。红外光谱的强度h(δ)与形成该光的两束相干光的光程差δ之间有傅里叶变换的函数关系。


傅立叶变换测定红外光谱用于精确控制两相干光光程差的干涉仪测量得到下式表示的光强随光程差变化的干涉图其中v为波数,将包含各种光谱信息的干涉图进行傅立叶变换得实际的吸收光,傅立叶变换红光谱具有高检测灵敏度、高测量精度、高分辨率、测量速度快、散光低以及波段宽等特点。随着计算机技术的不断进步.FTIR也在不断发展。该方法现已广泛地应用于有机化学、金属有机,无机化学、催化、石油化工、材料科学、生物、医药和环境等领域。


红外光谱的应用


1、用于已知物的鉴定


将试样的谱图与标准的谱图进行对照或者与文献上的谱图进行对照。如果两张谱图各吸收峰的位置和形状完全相同,峰的相对强度一样,就可以认为样品是该种标准物。如果两张谱图不一样,或峰位不一致,则说明两者不为同一化合物,或样品有杂质。如用计算机谱图检索,则采用相似度来判别。使用文献上的谱图应当注意试样的物态、结晶状态、溶剂、测定条件以及所用仪器类型均应与标准谱图相同。


2、用于未知物结构的测定


测定未知物的结构,是红外光谱法定性分析的一个重要用途。如果未知物不是新化合物,可以通过两种方式利用标准谱图进行查对:


(1)查阅标准谱图的谱带索引,与寻找试样光谱吸收带相同的标准谱图;

(2)进行光谱解析,判断试样的可能结构,然后在由化学分类索引查找标准谱图对照核实。


3、确定未知物的不饱和度


由元素分析的结果可求出化合物的经验式,由相对分子质量可求出其化学式并求出不饱和度。从不饱和度可推出化合物可能的范围。不饱和度是表示有机分子中碳原子的不饱和程度。计算不饱和度W的经验公式为:W=1+n4+(n3-n1)/2式中n4、n3、n1分别为分子中所含的四价、三价和一价元素原子的数目。二价原子如S、O等不参加计算。


当计算得:当W=0时,表示分子是饱和的,为链状烃及其不含双键的衍生物。当W=1时,可能有一个双键或脂环;当W=2时,可能有两个双键和脂环,也可能有一个叁键;当W=4时,可能有一个苯环等。


2018-06-26  浏览次数:3131
本文来源:https://www.yiqi.com/citiao/detail_818.html
热门标签: 拉曼光谱_拉曼光谱原理_拉曼光谱检测分析法吸收光谱_原子分子吸收光谱_紫外吸收光谱暗线光谱_明线光谱_暗线光谱物质鉴别光谱分析_光谱分析法原理|分类_发射吸收光谱分析
  • 最新资讯
  • 红外光谱
  • 光谱
  • 傅里叶变换红外光谱
官方微信

仪器网微信服务号

扫码获取最新信息


仪器网官方订阅号

扫码获取最新信息

在线客服

咨询客服

在线客服
工作日:  9:00-18:00
联系客服 企业专属客服
电话客服:  400-822-6768
工作日:  9:00-18:00
订阅商机

仪采招微信公众号

采购信息一键获取海量商机轻松掌控