仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

荧光寿命成像助力攻克癌症热点靶标——四链DNA结构

徕卡显微系统(上海)贸易有限公司 2021-07-06 23:39:18 756  浏览
  • 1953年,科学家詹姆斯-沃森和弗朗西斯-克里克发现了DNA分子的双螺旋结构,遗传学的研究进入到分子层次,人们可以更深层的了解遗传信息的构成和传递途径(图1A)。近年,科学家在人类癌症细胞中发现一种四重螺旋体DNA分子——G-四链体(G-quadruplex)。它是由富含串联重复鸟嘌呤(G)的DNA或RNA折叠形成的高级结构。G-四分体(G-quartet)是四链体的结构单元,由Hoogsteen氢键连接4个G形成环状平面,两层或以上的四分体通过π-π堆积形成四链体(图1B)。

     

    有研究表明,G-四链体更多的出现在癌细胞等快速分裂的细胞中,与癌基因的启动子区域和DNA链的端粒区域相互作用。因此,G-四链体结构与DNA复制过程有着紧密联系,对于细胞分裂和增殖非常关键[1]。那么,通过靶向调控G-四链体结构将有望成为选择性YZ癌细胞增殖的新途径,G-四链体也成为了癌症ZL药物的重要靶标。

    图1.A:James Dewey Waston(左)& Francis Harry Compton Crick(右)

    B:G4-DNA的3D结构

    鉴于G4-DNA参与到很多生物过程当中,开发用于检测和可视化细胞中 G4-DNA 结构的工具也尤为重要。伦敦帝国理工学院的研究人员开发了一种能够在活细胞中检测G4-DNA的荧光探针——DAOTA-M2,为人们揭开了这种结构的神秘面纱 [2]。

     

    这种探针具备良好的活细胞渗透性和低细胞毒性,在与G4-DNA结合时会发出荧光,可以用来观察G4-DNA是如何与活细胞内的其他分子相互作用的。并且当DAOTA-M2与不同的核酸拓扑结构结合时,将显示出不同的荧光寿命信息,进而可以区别双螺旋DNA和G4 DNA(图2),因为与四链体结合时荧光寿命更长(图3)。

    图2. 荧光寿命置换测定的示意图:竞争对手结合后,DAOTA-M2 从 G4-DNA 转移到 dsDNA环境,导致其荧光寿命缩短

    图3 DAOTA-M2染色的活细胞U2OS细胞核DNA的FLIM分析(a)以 512 × 512 分辨率(λex=477 nm,λem=550–700 nm)记录的荧光强度图像,红线表示用于 FLIM 分析的核分割(b) 来自 a 的 FLIM 图,显示在平均寿命 (τw) 9ns(红色)和 13ns(蓝色)之间(c) 平均核强度与平均核寿命(蓝点)的二维相关性(d)单个原子核的放大 FLIM 图 - 颜色代表寿命,由 9ns(红色)和 13ns(蓝色)之间的颜色梯度条定义


    G4-DNA的生物功能是通过动态的折叠和打开实现。在细胞内,G4-DNA可以自发折叠,但其打开是由专门的解旋酶来完成。并且在接下来的研究中,科学家发现哺乳类动物中的DNA 解旋酶 FancJ 和 RTEL1的表达量减少将会导致DAOTA-M2荧光寿命变长(图4)[3]。因此可以直接利用DAOTA-M2荧光寿命的变化监测G4-DNA在活细胞中的动态变化

    图4,减少 FancJ或RTEL1 解旋酶表达如何导致更长的 DAOTA-M2 寿命 (τw)的示意图

    G4-DNA被认为是潜在癌症ZL药物靶点,因此评估给定的 G4-DNA靶向药物与该结构结合的能力将非常有用。通过不同处理后DAOTA-M2的荧光寿命变化,结果显示双羧酸功能化的Ni(Ni-salphen)与G4-DNA有很强的靶向结合能力,会在短时间内导致DAOTA-M2荧光寿命迅速下降。(图5)

    图5. 加入结合剂1-7hr的DAOTA-M2 的代表性 FLIM 成像结果(显示在 6ns(红色)和 14ns(蓝色)之间)共孵育后 使用 DMSO(对照)、Zn-salphen、Nisalphen 。比例尺:20 μm


    在以上的科研工作中,不难发现,JZ的检测方法是必不可少的,比如贯穿于整篇文献中的FLIM技术。FLIM(Fluorescence Lifetime Imaging,荧光寿命成像):是一种基于荧光寿命的显微成像技术,其成像结果提供像素位点的寿命信息,使得我们在荧光强度成像之外,能更加深入地对样品进行功能性测量。荧光寿命成像具有不同于荧光强度成像的众多优点,如不受荧光物质浓度、光漂白、激发光强度等因素的影响。会因为分子构象、分子间相互作用、分子微环境、生理状态等条件改变而发生变化。Leica全新STELLARIS 8 FALCON荧光寿命成像系统,搭载新一代白激光(440-790nm)以及HyD X高灵敏度专用检测器,提供超快速、多维度荧光寿命成像解决方案。

     

    特异性探针与FLIM相结合使用,不仅可以用来监测活细胞细胞核中G4-DNA的形成,以及判定小分子药物与G4-DNA的相互作用,还可以应用于G4-DNA靶向药物的筛选。这些信息将为癌症的诊断和ZL带来了新启示,更有助于靶向性新疗法新药物的开发。


    了解更多:https://www.leica-microsystems.com.cn/cn/?nlc=20201230-SFDC-011237




参与评论

全部评论(0条)

热门问答

荧光寿命成像助力攻克癌症热点靶标——四链DNA结构

1953年,科学家詹姆斯-沃森和弗朗西斯-克里克发现了DNA分子的双螺旋结构,遗传学的研究进入到分子层次,人们可以更深层的了解遗传信息的构成和传递途径(图1A)。近年,科学家在人类癌症细胞中发现一种四重螺旋体DNA分子——G-四链体(G-quadruplex)。它是由富含串联重复鸟嘌呤(G)的DNA或RNA折叠形成的高级结构。G-四分体(G-quartet)是四链体的结构单元,由Hoogsteen氢键连接4个G形成环状平面,两层或以上的四分体通过π-π堆积形成四链体(图1B)。

 

有研究表明,G-四链体更多的出现在癌细胞等快速分裂的细胞中,与癌基因的启动子区域和DNA链的端粒区域相互作用。因此,G-四链体结构与DNA复制过程有着紧密联系,对于细胞分裂和增殖非常关键[1]。那么,通过靶向调控G-四链体结构将有望成为选择性YZ癌细胞增殖的新途径,G-四链体也成为了癌症ZL药物的重要靶标。

图1.A:James Dewey Waston(左)& Francis Harry Compton Crick(右)

B:G4-DNA的3D结构

鉴于G4-DNA参与到很多生物过程当中,开发用于检测和可视化细胞中 G4-DNA 结构的工具也尤为重要。伦敦帝国理工学院的研究人员开发了一种能够在活细胞中检测G4-DNA的荧光探针——DAOTA-M2,为人们揭开了这种结构的神秘面纱 [2]。

 

这种探针具备良好的活细胞渗透性和低细胞毒性,在与G4-DNA结合时会发出荧光,可以用来观察G4-DNA是如何与活细胞内的其他分子相互作用的。并且当DAOTA-M2与不同的核酸拓扑结构结合时,将显示出不同的荧光寿命信息,进而可以区别双螺旋DNA和G4 DNA(图2),因为与四链体结合时荧光寿命更长(图3)。

图2. 荧光寿命置换测定的示意图:竞争对手结合后,DAOTA-M2 从 G4-DNA 转移到 dsDNA环境,导致其荧光寿命缩短

图3 DAOTA-M2染色的活细胞U2OS细胞核DNA的FLIM分析(a)以 512 × 512 分辨率(λex=477 nm,λem=550–700 nm)记录的荧光强度图像,红线表示用于 FLIM 分析的核分割(b) 来自 a 的 FLIM 图,显示在平均寿命 (τw) 9ns(红色)和 13ns(蓝色)之间(c) 平均核强度与平均核寿命(蓝点)的二维相关性(d)单个原子核的放大 FLIM 图 - 颜色代表寿命,由 9ns(红色)和 13ns(蓝色)之间的颜色梯度条定义


G4-DNA的生物功能是通过动态的折叠和打开实现。在细胞内,G4-DNA可以自发折叠,但其打开是由专门的解旋酶来完成。并且在接下来的研究中,科学家发现哺乳类动物中的DNA 解旋酶 FancJ 和 RTEL1的表达量减少将会导致DAOTA-M2荧光寿命变长(图4)[3]。因此可以直接利用DAOTA-M2荧光寿命的变化监测G4-DNA在活细胞中的动态变化

图4,减少 FancJ或RTEL1 解旋酶表达如何导致更长的 DAOTA-M2 寿命 (τw)的示意图

G4-DNA被认为是潜在癌症ZL药物靶点,因此评估给定的 G4-DNA靶向药物与该结构结合的能力将非常有用。通过不同处理后DAOTA-M2的荧光寿命变化,结果显示双羧酸功能化的Ni(Ni-salphen)与G4-DNA有很强的靶向结合能力,会在短时间内导致DAOTA-M2荧光寿命迅速下降。(图5)

图5. 加入结合剂1-7hr的DAOTA-M2 的代表性 FLIM 成像结果(显示在 6ns(红色)和 14ns(蓝色)之间)共孵育后 使用 DMSO(对照)、Zn-salphen、Nisalphen 。比例尺:20 μm


在以上的科研工作中,不难发现,JZ的检测方法是必不可少的,比如贯穿于整篇文献中的FLIM技术。FLIM(Fluorescence Lifetime Imaging,荧光寿命成像):是一种基于荧光寿命的显微成像技术,其成像结果提供像素位点的寿命信息,使得我们在荧光强度成像之外,能更加深入地对样品进行功能性测量。荧光寿命成像具有不同于荧光强度成像的众多优点,如不受荧光物质浓度、光漂白、激发光强度等因素的影响。会因为分子构象、分子间相互作用、分子微环境、生理状态等条件改变而发生变化。Leica全新STELLARIS 8 FALCON荧光寿命成像系统,搭载新一代白激光(440-790nm)以及HyD X高灵敏度专用检测器,提供超快速、多维度荧光寿命成像解决方案。

 

特异性探针与FLIM相结合使用,不仅可以用来监测活细胞细胞核中G4-DNA的形成,以及判定小分子药物与G4-DNA的相互作用,还可以应用于G4-DNA靶向药物的筛选。这些信息将为癌症的诊断和ZL带来了新启示,更有助于靶向性新疗法新药物的开发。


了解更多:https://www.leica-microsystems.com.cn/cn/?nlc=20201230-SFDC-011237




2021-07-06 23:39:18 756 0
荧光寿命成像显微镜包括哪些部分
 
2018-11-20 04:11:12 319 0
相量荧光寿命成像检测代谢状态变化

胰岛α细胞和β细胞功能失调导致的糖尿病患者,无法维持正常的血糖水平。为了解其中的规律,我们使用了多光子相量-FLIM对NADH自发荧光成像来检测葡萄糖刺激前后胰岛活细胞的代谢变化。多光子相量FLIM NADH自发荧光成像为监测活体中的代谢状态提供了一种直接的检测和分析方法。与此同时,它还为在延时状态下分别监测α细胞和β细胞提供了高空间分辨率。我们观察到,对健康胰岛实施葡萄糖刺激后,β细胞中氧化磷酸化水平上升,α细胞中氧化磷酸化水平受到抑 制,这在患有II型糖尿病的胰岛中未观察到。这证明,相量FLIM可以作为监测细胞代谢和糖尿病研究中的药物发现。 



图像:小鼠胰岛的代谢成像

2022-12-19 21:13:33 227 0
PCR 只能做双链结构的DNA是吗?单链的能不能做
 
2017-02-17 08:13:11 893 2
怎样由DNAdiyi链合成DNA双链
 
2016-05-04 15:13:42 326 1
DNA双螺旋结构
为什么右手性的双螺旋结构稳定
2006-03-04 04:20:37 707 3
单链DNA病毒复制转录都要经历双链DNA的阶段吗
 
2017-02-21 07:15:20 451 3
dna复制时连续合成的链称为什么链
 
2015-07-10 23:14:45 519 1
DNA复制的链的延伸
 
2018-11-19 14:02:14 404 0
DNA双螺旋结构是什么
 
2007-01-24 00:23:07 1113 4
DNA测序的模版是单链还是双链呢
 
2012-11-14 18:13:08 578 3
DNA复制过程为什么会有领头链和随从链之分
 
2011-11-15 22:09:04 1353 2
两个单链 DNA需要什么酶能合成双链
 
2014-06-27 11:50:06 414 2
DNA复制时,连续合成的链称为什么链?不连续合成的链称为什么链?
 
2011-03-25 05:34:18 524 3
DNA复制时,连续合成的链称为什么链?不连续合成的链称为什么链
 
2015-07-10 11:21:45 553 1
DNA复制时,连续合成的链称为什么链?不连续合成的链称为什么链
 
2018-03-05 19:22:24 722 1
DNA体内复制合成子链疑问。
在引物基础上,一条链连续合成;另一条链不连续合成。再由DNA连接酶连接。 半不连续复制求解释。
2012-01-27 09:09:37 464 3
DNA为什么是双螺旋结构?
 
2018-06-25 23:03:12 660 1

12月突出贡献榜

推荐主页

最新话题