全部评论(1条)
-
- woundbird1023 2017-04-19 00:00:00
- 机械夹具中支承板的作用是: 1、稳定保证加工质量 采用夹具后,工件各加工表面间的相互位置精度是由夹具保证的,而不是依靠工人的水平与熟练程度,所以产品质量容易保证。 2、提高劳动生产率 使用夹具使工件装夹迅速、方便、从而大大缩短了辅助时间,提高了生产率。特别是对于加工时间短,辅助时间长的中小,零件,效果更为显著。 3、减轻工人的劳动强度。保证安全生产 有些工件,特别是比较大的工件,调整和夹紧很费力气,而且注意力要高度集中,很容易疲劳;如果使用夹具,采用气动或液压自动化夹紧装置,既可减轻工人的劳动强度,又能保证生产安全。 4、扩大机床的使用范围 实现一机多用,一机多能,如在铣床上安装一个回转台或分度装置,工有等分要求的零件;在车床上安装镗模,工箱体零件上的同轴孔系。
-
赞(13)
回复(0)
热门问答
- 旋转流变仪使用的锥板夹具与平行板夹具有何异同
- 焊接时,为什么要使用夹具?对夹具有哪些要求?常用夹具有哪些
- 磨床使用夹具有哪些
- 模具与夹具有什么关系
- 旋转流变仪,椎板后的括号内参数什么意思?
- 旋转黏度计与旋转流变仪测黏度有什么差异
Z近总是被问到“旋转黏度计与旋转流变仪测黏度有什么差异”这个问题,那今天索性就来聊聊这个话题。旋转黏度计及其测量转子和旋转流变仪及其测量夹具系统通常如下图所示。
- 旋转流变仪的主要技术参数
- 旋转流变仪的工作原理
- 钻床夹具有何特点?有那些类型
- 旋转流变仪测什么的
- 流变仪夹具怎么设置
流变仪夹具怎么设置:详尽指导与专业建议
在流变学实验中,流变仪夹具的设置是确保实验结果准确性和重复性的关键步骤。不同类型的流变仪与夹具系统在操作和安装上都有一定的差异,正确的夹具设置不仅能提升测量精度,还能有效延长设备的使用寿命。本文将从流变仪夹具的基础知识出发,详细介绍如何正确设置流变仪夹具,以及在实际操作过程中需要注意的细节问题,以帮助实验人员提高实验效率和数据准确性。
1. 理解流变仪夹具的功能
流变仪的夹具用于固定测试样品,并且在测量过程中承受一定的应力与应变。其主要作用是确保样品在测试过程中不会因外力影响而发生滑动或变形,从而影响实验数据的稳定性和可靠性。不同的流变仪夹具适用于不同类型的样品,例如液体、凝胶、粘度较高的流体等。
2. 如何设置流变仪夹具
选择合适的夹具 选择适合你实验的流变仪夹具至关重要。不同的测试方法(如剪切、扩展、压缩等)需要不同的夹具系统。例如,扁平夹具适用于具有高粘度或非均匀分布的样品,而圆形夹具则适合对称的液体样品。
安装夹具 流变仪夹具安装时,必须确保夹具牢固,并且位置正确。夹具如果没有安装好,可能导致测试误差或设备损坏。安装时,应确保夹具的中心与流变仪轴心对齐,并固定夹具的固定螺钉,避免松动。
调节夹具间隙 夹具间隙的调整要非常细致。间隙过大可能导致样品测量不准确,过小则可能损伤样品或流变仪。通常,流变仪的设置界面会提供夹具间隙的自动或手动调节功能,确保夹具的间隙与样品的物理性质相匹配。
3. 注意事项
温度控制 在设置夹具时,温度的控制至关重要,尤其是在涉及高温或低温流变实验时。流变仪夹具系统通常与温控装置相连接,确保实验在稳定的温度环境下进行。
样品预处理 样品的处理也是设置流变仪夹具时需要考虑的重要环节。为了避免样品表面气泡或不均匀,通常建议对样品进行充分搅拌或脱气处理。在安装夹具前,确保样品的表面平整并无气泡,以保证测试的准确性。
定期检查和维护 流变仪夹具的定期检查和维护是确保设备长期稳定运行的前提。通过定期检查夹具的螺钉、密封件和传动系统,可以避免因磨损或老化引发的不必要故障。
4. 总结
流变仪夹具的设置是流变学实验中至关重要的一步,正确的设置不仅能确保实验结果的准确性和一致性,还能延长设备的使用寿命。通过选择合适的夹具、调节夹具间隙、注意温控和样品预处理等操作,能够大程度地优化实验过程,获得可靠的数据支持。无论是日常实验还是高难度测试,细致的操作与科学的维护管理都能为您带来更高效的实验体验。
- 液压平推夹具和楔型夹具有什么区别,哪种夹具更好?
- 平双与锥双螺杆的结构和性能
- 通用可调夹具和组成夹具有什么共同特点
- 平行板电容器的场强方向如何判断???
- 大学物理,平行板电容器,电场强度,电位移矢量···
- 微波传感器与超声波传感器有何异同
- 温度传感器与热电偶有何异同?
- 旋转流变仪类型简明对比
旋转流变仪通过驱动一对夹具沿圆周方向的相对运动来实现夹于其中的被测物质的流动和变形从而进行流变测量。施加与测量的具体实施方法有两种:1)施加应变(角位移)或应变速率(角速率)刺激,测量响应的应力(扭矩),这种技术早期被称为应变控制型(Controlled Strain, CR);2)施加应力(扭矩)刺激,测量响应的应变(角位移)或应变速率(角速率),这种技术早期被称为应力控制型(Controlled Stress, CS)。上述两种流变仪的结构设计特点如图1所示。
图1 旋转流变仪结构设计(左为CR型,右为CS型)
CR型旋转流变仪的结构设计特点是驱动电机与扭矩传感器分离各自独立(Separate Motor & Transducer, SMT),样品的流动或变形刺激由驱动电机施加,而样品的应力响应则由扭矩传感器量测。在CR型流变仪上,刺激施加和响应量测是分别在两个夹具侧实现,因此,又被称为双头(Double Heads, DH)流变仪。CR型旋转流变仪的原生测试模式工作原理如图2左图所示。
图2 CR型(左)与CS型(右)原生测试模式工作原理
CS型旋转流变仪的结构设计特点是驱动电机兼任扭矩传感器(Combined Motor & Transducer, CMT),样品的流动或变形刺激由驱动电机施加,同时将驱动电机的工作扭矩扣除轴承摩擦矩和转动惯性矩后当作“量测”的样品扭矩。在CS型流变仪上,刺激施加和响应量测是在同一个夹具侧实现,因此,又被称为单头(Single Head, SH)流变仪。CS型旋转流变仪的原生测试模式工作原理如图2右图所示。
在仪器设计的早期,CR型流变仪只能执行控应变和控剪切速率测试,而CS型流变仪只能执行控应力测试。现代旋转流变仪得益于“反馈-控制”的飞速发展,在进行可以达到平衡态的测试(如稳态速率扫描、振荡测试等)时,CR旋转流变仪与CS旋转流变仪在一定程度上是等效的,即控应变模式与控应力模式可以互换且基本不影响测量结果。两种仪器在非原生测试模式下的工作原理如图3所示。
图3 CR型(左)与CS型(右)非原生测试模式工作原理
但由于二者结构设计和工作原理存在根本不同,在进行瞬态测试(如阶跃应变、阶跃速率、阶跃应力和大振幅振荡等)时两种仪器的测试结果会存在较大差别。
在CS旋转流变仪上进行瞬态测试时,系统(转子和夹具)转动惯量和轴承摩擦是避不开的,这在一定程度上会影响测量结果的可靠性,因此,进行瞬态测试前,校准电机转子和测量夹具的惯量和轴承摩擦是十分必要的。
系统惯量的客观存在使得瞬态测试时很难正确捕捉到样品的短时响应特征,即便是CS旋转流变优势项目——阶跃应力(蠕变)测试中也是如此。
系统惯量还造成CS旋转流变仪的应变速率切换时间较长,在控应变速率模式的瞬态测试中很难捕捉到正确的瞬时响应;而在进行控应变速率模式的稳态测量时需要更长的采点时间以保证测量结果可靠,从而导致总测试时间延长。
在CS旋转流变仪上进行动态振荡测试时,要对原始量进行校正(扣除轴承摩擦和系统惯量效应)才能得到样品的黏弹响应,由于惯量效应(噪音项)正比于测试频率的平方,这在一定程度上限制了实际有效的测试频率上限。
CR旋转流变仪的应变或应变速率的切换时间较短,在控应变模式和控应变速率模式上仍具有很大优势。
但在CR旋转流变仪上进行控制应力模式的测试时,由于样品的响应被耦合到“反馈-控制”程序中,因此,在ZZ测试前要先对样品的响应特征进行预测得到样品的控制因数,从而使得总的测试时间会有所增加。
两类旋转流变仪的主要差异对比列于表1。
表1 CR和CS简明对比
CR(应变控制型)
CS(应力控制型)
备注
仪器结构
驱动电机与扭矩传感器分离(Separate Motor & Transducer, SMT)
驱动电机兼任扭矩传感器(Combined Motor & Transducer, CMT)
施加与量测
分在两个夹具头上(Double Heads, DH)
同在一个夹具头上(Single Head, SH)
扭矩量测
在静止头上实现
在运动头上实现
噪音源
轴承摩擦和系统惯量
低黏度和低模量数据有效性评估难度较大
原生控制
控应变或应变速率
控应力
阶跃应变(应力松弛)
闭路控制(Closed-Loop)
开路控制(Open-Loop)
CS起始数据无意义
阶跃速率(应力增长)
闭路控制
开路控制
CS响应数据不真实
阶跃应力(蠕变)
开路控制
闭路控制
CS惯量效应不可避免
流动测试(Flow)
闭路控应变速率
开路控应变速率
小振幅振荡(SAOS)
闭路控应变
开路控应变
CS惯量效应不可避免
大振幅振荡(LAOS)
闭路控应变
闭路控应力
CS惯量效应不可避免且LAOS控应力无实用价值
注:闭路控制中流动和变形的施加只取决于仪器性能;开路控制中流动和变形的施加不仅取决于仪器性能,还依赖于样品黏弹性能。
作者:李润明 博士
- 旋转流变仪扭矩如何计算
在工业和科研领域,旋转流变仪作为一种重要的仪器,广泛应用于测量材料在不同剪切条件下的流变性能。流变学的研究涉及液体和软固体材料的变形与流动特性,而旋转流变仪则通过测量材料在旋转剪切场中的行为来评估其粘度、屈服强度等重要物理特性。其中,扭矩的计算是流变仪测试过程中至关重要的一部分,它直接关系到实验数据的准确性与可靠性。本文将详细介绍旋转流变仪中扭矩的计算方法,并探讨其在材料性能分析中的应用。
旋转流变仪扭矩的基本概念
在旋转流变仪的测试过程中,扭矩是指作用于样品之间旋转部件的力矩。仪器通过一个或多个旋转的圆盘或圆筒,将剪切力作用于样品,从而引起样品的变形。根据样品的粘性、弹性或塑性特性,旋转部分的扭矩会发生变化。因此,扭矩的大小与样品的流变特性密切相关,是流变学研究的重要参数之一。
扭矩计算的基本原理
旋转流变仪的扭矩计算依赖于仪器的几何结构以及旋转速度。其计算公式通常与转动角速度、转动角度和仪器的几何参数密切相关。对于典型的平行板流变仪,扭矩T可以通过下列公式计算:
[ T = \tau \cdot r^2 \cdot A ]
其中,( \tau ) 为剪切应力,( r ) 为旋转半径,( A ) 为板的接触面积。这个公式体现了材料的剪切强度和接触面积对扭矩的影响。
扭矩与剪切应力的关系
扭矩计算的核心是剪切应力(( \tau ))。剪切应力与剪切速率(( \dot{\gamma} ))之间的关系取决于材料的流变模型。例如,对于牛顿流体,其剪切应力与剪切速率成正比。而对于非牛顿流体,剪切应力与剪切速率之间的关系则更为复杂,可能是非线性的。在旋转流变仪中,通常采用流变模型(如Bingham塑性体模型、卡西定律等)来拟合实验数据,从而获得准确的剪切应力值。
影响扭矩计算的因素
在旋转流变仪的测试中,扭矩的计算还受到多个因素的影响。样品的流变特性是一个关键因素。高粘度的样品会产生较大的扭矩,而低粘度的样品则产生较小的扭矩。温度、剪切速率和样品的物理形态(如颗粒大小、分布等)也会对扭矩产生显著影响。因此,在进行实验时,必须精确控制这些变量,以确保数据的准确性。
5月突出贡献榜
推荐主页
最新话题
-
- #DeepSeek如何看待仪器#
- 干体炉技术发展与应用研究
- 从-70℃到150℃:一台试验箱如何终结智能...从-70℃到150℃:一台试验箱如何终结智能调光膜失效风险?解决方案:SMC-210PF-FPC温湿度折弯试验箱的五大核心价值1. 多维度环境模拟,覆盖全生命周期测试需求超宽温域:支持-70℃至+150℃的极限温度模拟(可选配),复现材料在极寒、高温、冷热冲击下的性能表现;控湿:湿度范围20%~98%RH(精度±3%RH),模拟热带雨林、沙漠干燥等复杂工况,暴露材料吸湿膨胀、分层缺陷;动态折弯:0°~180°连续可调折弯角度,支持R1~R20弯曲半径设定,模拟实际装配中的微小应力,提前预警裂纹、断裂风险。
参与评论
登录后参与评论