仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

影响接触角测量的因素2

北京东方德菲仪器有限公司 2021-01-14 16:04:09 277  浏览
  •        当液滴和环境气体都相同时,人们希望接触角的数值可以反映固体的固有属性,但要想得到可重复的准确接触角数值, 我们必须要了解测量接触角的影响因素:

           a. 测量用液体的纯度。在前面已经提及,接触角的值应该由 „液体/固体表面/气相“ 所决定,我们希望在液体和气相相同的情况下,通过测量得到的接触角值来表征固体表面的属性,而这一前提是液体相维持恒定。如果由于某种原因(污染/纯度变化/变质等),测量用的液体相发生变化,这势必也将影响得到的接触角值。而与接触角值关系最紧密的液体属性是它的表面张力值,后者很容易由于受到污染或由于纯度发生变化而变化。所以非常有必要不时地通过对测量用液体的表面张力值的测量,来控制/确保采用的液体的质量。而准确测量液体表面张力值很容易通过仪器提供的光学悬滴法来完成(甚至可以在接触角测量前的前一瞬间同时完成)。 

            b. 样品表面受到污染。接触角值对表面非常敏感,它的敏感性甚至高于任何其它的表面表征手段(如XPS),因为它只与表面最外层的约1 nm的厚度属性有关系,而其它的表面表征手段感知的更 „深入“些(比如XPS能够感知到约10nm的深度)。也就是说,能够影响接触角值的只有表面最外层的一个约1 nm厚度的薄层,在这一薄层以下的表面结构和属性将不再对决定接触角值作出什么贡献。所以样品表面上任何微小的污染,虽然它的量从样品总量来说是如此地微不足道,也可能对接触角的值产生明显地影响,而这些影响将不可能被样品的其它未受污染部分所稀释(所平均)。

            ZH需要提及的还有样品表面的微结构。除了样品表面的化学/物理属性外,表面的微结构(包括粗糙度)将对接触角的值以及其滞后性生产显著影响。这也是通过接触角测量来表征这些微观结构的原理。


参与评论

全部评论(0条)

热门问答

测量接触角的影响因素 2

当液滴和环境气体都相同时,人们希望接触角的数值可以反映固体的固有属性,但要想得到可重复的准确接触角数值, 我们必须要了解测量接触角的影响因素:

a. 测量用液体的纯度。在前面已经提及,接触角的值应该由 „液体/固体表面/气相“ 所决定,我们希望在液体和气相相同的情况下,通过测量得到的接触角值来表征固体表面的属性,而这一前提是液体相维持恒定。如果由于某种原因(污染/纯度变化/变质等),测量用的液体相发生变化,这势必也将影响得到的接触角值。而与接触角值关系最紧密的液体属性是它的表面张力值,后者很容易由于受到污染或由于纯度发生变化而变化。所以非常有必要不时地通过对测量用液体的表面张力值的测量,来控制/确保采用的液体的质量。而准确测量液体表面张力值很容易通过仪器提供的光学悬滴法来完成(甚至可以在接触角测量前的前一瞬间同时完成)。

b. 样品表面受到污染。接触角值对表面非常敏感,它的敏感性甚至高于任何其它的表面表征手段(如XPS),因为它只与表面最外层的约1 nm的厚度属性有关系,而其它的表面表征手段感知的更 „深入“些(比如XPS能够感知到约10nm的深度)。也就是说,能够影响接触角值的只有表面最外层的一个约1 nm厚度的薄层,在这一薄层以下的表面结构和属性将不再对决定接触角值作出什么贡献。所以样品表面上任何微小的污染,虽然它的量从样品总量来说是如此地微不足道,也可能对接触角的值产生明显地影响,而这些影响将不可能被样品的其它未受污染部分所稀释(所平均)。

c. ZH需要提及的还有样品表面的微结构。除了样品表面的化学/物理属性外,表面的微结构(包括粗糙度)将对接触角的值以及其滞后性生产显著影响。这也是通过接触角测量来表征这些微观结构的原理。


2020-09-17 11:32:51 307 0
影响接触角测量的因素2

       当液滴和环境气体都相同时,人们希望接触角的数值可以反映固体的固有属性,但要想得到可重复的准确接触角数值, 我们必须要了解测量接触角的影响因素:

       a. 测量用液体的纯度。在前面已经提及,接触角的值应该由 „液体/固体表面/气相“ 所决定,我们希望在液体和气相相同的情况下,通过测量得到的接触角值来表征固体表面的属性,而这一前提是液体相维持恒定。如果由于某种原因(污染/纯度变化/变质等),测量用的液体相发生变化,这势必也将影响得到的接触角值。而与接触角值关系最紧密的液体属性是它的表面张力值,后者很容易由于受到污染或由于纯度发生变化而变化。所以非常有必要不时地通过对测量用液体的表面张力值的测量,来控制/确保采用的液体的质量。而准确测量液体表面张力值很容易通过仪器提供的光学悬滴法来完成(甚至可以在接触角测量前的前一瞬间同时完成)。 

        b. 样品表面受到污染。接触角值对表面非常敏感,它的敏感性甚至高于任何其它的表面表征手段(如XPS),因为它只与表面最外层的约1 nm的厚度属性有关系,而其它的表面表征手段感知的更 „深入“些(比如XPS能够感知到约10nm的深度)。也就是说,能够影响接触角值的只有表面最外层的一个约1 nm厚度的薄层,在这一薄层以下的表面结构和属性将不再对决定接触角值作出什么贡献。所以样品表面上任何微小的污染,虽然它的量从样品总量来说是如此地微不足道,也可能对接触角的值产生明显地影响,而这些影响将不可能被样品的其它未受污染部分所稀释(所平均)。

        ZH需要提及的还有样品表面的微结构。除了样品表面的化学/物理属性外,表面的微结构(包括粗糙度)将对接触角的值以及其滞后性生产显著影响。这也是通过接触角测量来表征这些微观结构的原理。


2021-01-14 16:04:09 277 0
接触角的计算方法2

       上次介绍的算法模型都以轴对称性为前提,但是实际情况或多或少会有些偏差,这时液滴两边的轮廓耦合在一起时会相互影响。材料表面上的液滴有时会明显的偏离轴对称模型,比如把针插入液滴内部通过加液-减液法测量动态接触角时,或是使用倾斜样品台测量滚动角和动态接触角时的情况,液滴都呈明显的不对称的形状。为了更准确的测量不对称液滴的接触角,我们可以选择对液滴轮廓的不同区域使用不同的算法模型进行分析,ZH将分析结果加以综合得出ZJ的拟合结果。这种算法称为Truedrop模型,它可以适用于任何液滴无论液滴是否对称。特别是在使用加液-减液法和倾斜台法测量动态接触角时是最 好的选择。

 

       最传统的算法模型是tangent切线法模型。切线法是将液滴在三相接触点附近的一小段轮拟合成为二次曲线。切线法的优点在于不受液滴对称性的影响,因为它不考虑液滴的整体轮廓。但是切线法的缺陷也是明显的,即我们一开始提到的液滴三相接触点附近的轮廓受到光线和材料平整度的影响经常是不清晰的。所以大多数情况下,使用切线法的目的只是为了和其他算法模型的计算结果进行参考对比。

 

       最 后需要说明的是,不少仪器的软件功能在给出接触角测量结果的时候,同时给出了算法模型和实测液滴轮廓之间的偏差值,通常这个偏差值越小结果越准确。这个计算功能可以帮助使用者判断所选用的算法模型是否合适。


2020-11-26 11:15:36 313 0
影响在线pH测量的因素
 
2013-08-25 20:24:21 512 1
水的电离的2:影响水电离的因素
 
2017-11-24 02:23:13 463 1
接触角测量仪采用浮泡法测量接触角的特点2

       比起通常的接触角测量方法,俘泡法在实际中使用的频率低得多,其中的很大一部分原因是由于操作比较麻烦。但对于一些具体的应用环境或样品,俘泡法拥有通常的测量法无法提供的特点和优势。这些应用环境和样品首数多数的生物医用材料(bio-/biomedical-materials),包括接触镜片(contact lenses),医用植入材料(medical implant materials)和生物医学用水凝胶(biomedical hydrogels)等。出于生物相容性的目的,这些材料的表面基本上是亲水的,而它们的应用环境是人体或生物体,长时间地 “浸泡” 在生理液中,表面处于水合状态(hydrated surface)。对于处于这样应用环境下的材料表面的润湿性表征方法采用俘泡法显然要比通常的接触角测量方法适合得多:让待考察的材料浸泡于接近生理液属性的液体相中来模拟其在真实的应用环境(包括合适温度的控制)下的(水合)状态,通过俘泡法来测量处于模拟环境下的该材料表面的接触角(包括动态接触角)和润湿性,这样可以很好地通过生物体外(in vitro)的测量来考察材料在生理环境中(in vivo)的性能和表现。对于这样的应用材料和环境,如果我们采用通常的接触角测量法,即使在测量前先让样品在待测液体相浸泡而让其 “饱和”,显然也无法反映其在实际使用环境中的表面润湿性行为,因为在测量过程中样品表面由于暴露在空气中,会因为不断 “失水”(dehydration)而改变其状态;也很难控制这一 “失水” 的程度来进行各个样品之间、在同一(水合)状态下的润湿行为的相互比较。

      

       俘泡法的一个应用实例是用于表征接触镜片的润湿性,它被ISO标准采纳为检测硬性透氧接触镜片(rigid gas-permeable contact lenses)润湿性的指定方法。接触镜片处于眼泪相中,后者在其表面形成一薄膜/层。眼泪相在镜片表面的接触角越小,它的铺展程度就越大,形成的眼泪薄膜也越稳定:当眼睛睁开时,眼泪薄膜在镜片表面收缩,对应的接触角为后退接触角;当眼睛闭上时,眼泪薄膜在镜片表面扩展,对应的接触角为前进接触角。对于软性接触镜片(soft contact lenses),虽然目前还没有标准指定具体的润湿性检测方法,但基于其水凝胶的水合特性,俘泡法事实上也被广泛地作为 “标准” 方法用于这类镜片的润湿性表征。采用与人的眼泪属性尽量接近的液体相,包括各种组分、所含的表面活性成分、pH值以及控制合适的温度,通过俘泡法可以最充分地模拟接触镜片在人体的真实使用环境(in vivo),以考察在这种环境下镜片的各种性能和润湿性。


2020-10-22 14:17:38 339 0
影响涡街流量计测量准确度的几个因素
 
2018-05-26 08:13:56 405 1
超声波测厚仪测量过程影响示值的因素
 
2011-05-20 13:39:26 459 1
雷达液位计的测量有哪些影响因素
 
2017-07-14 03:59:33 346 2
影响雷达测速仪测量错误的几种因素
 
2013-10-21 19:02:25 281 1
接触角测量仪的核心—接触角的计算方法2

       上次介绍的算法模型都以轴对称性为前提,但是实际情况或多或少会有些偏差,这时液滴两边的轮廓耦合在一起时会相互影响。材料表面上的液滴有时会明显的偏离轴对称模型,比如把针插入液滴内部通过加液-减液法测量动态接触角时,或是使用倾斜样品台测量滚动角和动态接触角时的情况,液滴都呈明显的不对称的形状。为了更准确的测量不对称液滴的接触角,我们可以选择对液滴轮廓的不同区域使用不同的算法模型进行分析,ZH将分析结果加以综合得出ZJ的拟合结果。这种算法称为Truedrop模型,它可以适用于任何液滴无论液滴是否对称。特别是在使用加液-减液法和倾斜台法测量动态接触角时是最 好的选择。

       最传统的算法模型是tangent切线法模型。切线法是将液滴在三相接触点附近的一小段轮拟合成为二次曲线。切线法的优点在于不受液滴对称性的影响,因为它不考虑液滴的整体轮廓。但是切线法的缺陷也是明显的,即我们一开始提到的液滴三相接触点附近的轮廓受到光线和材料平整度的影响经常是不清晰的。所以大多数情况下,使用切线法的目的只是为了和其他算法模型的计算结果进行参考对比。 

       最 后需要说明的是,不少仪器的软件功能在给出接触角测量结果的时候,同时给出了算法模型和实测液滴轮廓之间的偏差值,通常这个偏差值越小结果越准确。这个计算功能可以帮助使用者判断所选用的算法模型是否合适。


2020-08-31 13:48:26 290 0
电磁流量计测量影响因素和选型注意事项?
 
2013-03-26 04:47:14 307 2
什么因素会影响自动电位滴定仪的测量精度

       自动电位滴定仪分电计和滴定系统两大部分,电计采用电子放大控制线路,将指示电极与参比电极间的电位同预先设置的某一终点电位相比较,两信号的差值经放大后控制滴定系统的滴液速度,达到终点预设电位后,滴定自动停止。适用于一般以电位为检测指标的容量分析,可做为青霉素检测的专用仪器,被广泛用于多个领域中。

       自动电位滴定仪是通过测量电极电位变化,来测量离子浓度。首先选用适当的指示电极和参比电极,与被测溶液组成一个工作电池,然后加入滴定剂。在滴定过程中,由于发生化学反应,被测离子的浓度不断发生变化,因而指示电极的电位随之变化。在滴定终点附近,被测离子的浓度发生突变,引起电极电位的突跃,因此根据电极电位的突跃可确定滴定终点,并给出测定结果。
    自动注入器的精度与滴定液-被滴定的关系,将会影响测量的精度。
  1、自动滴定注入器的精度;把吐出滴定液的喷嘴浸入被滴定液内的状态下滴定时,其精度为0.005~0.02mL左右。若把喷嘴不浸入被滴定液内时,其一滴约为0.01~0.05mL左右。所以说,滴定一滴(0.05mL)假设滴入与不滴入,其测量精度如如下;
  (1)滴定量为10mL时,其精度为±0.5%;
       (2)滴定量为1mL时,其精度为±5%。
  2、滴定液-被滴定液的关系;
  有许多组合的关系,以下仅对酸碱滴定为例进行说明:
  (1)若是使用如盐酸与苛性碱般的强酸与强碱水溶液的滴定时,因其反应速度极快,且其当量点也甚明确,故几乎无误差产生;
  (2)另一方面,如石油的中和值测量法的酸价滴定时,因其为非水滴定的酸碱滴定,故其反应速度甚慢,且当量也不明确。所以其测值的重现性比水溶液滴定的测值来的差。


2019-09-26 13:38:14 710 0
电极电势的影响因素
 
2018-11-15 13:14:38 385 0
药物制剂的影响因素
 
2018-12-01 17:21:39 283 0
火焰光度计的影响因素
 
2018-11-25 13:10:10 612 0
旋光仪的影响因素
 
2018-12-02 12:11:54 319 0

1月突出贡献榜

推荐主页

最新话题