仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

为什么要用不同频率测量储层电阻率

rdsjuyitu 2017-06-15 13:42:07 576  浏览
  •  

参与评论

全部评论(1条)

  • tz5vy7 2017-06-16 00:00:00
    接地电阻肯定是越小越好,设备不同要求不同。在1000v以下中性点直接接地系统中,接地电阻小于或等于4欧,重复接地电阻小于或等于10欧。而电压1000V以下的中性点不接地系统中,一般规定接地电阻为4欧。因此,根据实际安装经验,在路灯照明系统接地电阻应小于或等于4欧。很多用户要求测量接地电阻范围到2000Ω,甚至更高,实际上有什么意义?常用的测量接地电阻的仪器如下图式样:

    赞(1)

    回复(0)

    评论

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

为什么要用不同频率测量储层电阻率
 
2017-06-15 13:42:07 576 1
为什么都是电阻率,土壤电阻率和管道防腐层电阻率为什么单位不一样呢?
 
2016-08-14 18:18:06 497 1
储层物性指什么?低场核磁共振如何用于储层物性分析

储层物性指什么?低场核磁共振如何用于储层物性分析

储层物性是油气储集层的物理性质。广义上还包括储集层岩石的骨架性质、孔隙性、渗透性、含流体性、热学性质、导电性、声学性质、放射性及各种敏感性等。狭义的一般指储层岩石的孔隙率和渗透率。

低场核磁共振如何用于储层物性分析:

低场核磁共振储层物性分析是利用氢原子核在外加磁场的作用下形成核磁共振现象的这一特性,测量同一样品在不同处理阶段的核磁共振信号,从而求取储层的孔隙度、渗透率、含油饱和度、可动流体饱和度等地质参数的一项新技术。该技术克服了常规岩心分析方法成本高、测试周期长的缺点,具有用量少、速度快、成本低、获取参数多、准确性高等优点。在储层物性方面采用核磁共振技术研究并应用,能够为石油勘探提供可靠且及时的数据,对于油田开发有着重要的实际意义。

储层物性评价是储层评价和油气资源评价的重要内容。许多石油院校、科研院所、油田单位在积极探索室内岩石物性准确测定,低场核磁共振技术不断发展起来而且日趋完善。低场核磁共振技术分析样品由测试岩心扩展到了岩屑以及井壁取心,且不受形状的限制,具获取参数多、分析速度快、精度高、可随钻分析、耗资低等特点,并使得在现场快速分析储层物性得以实现,形成了一项特色的快速评价储层物性的核磁共振技术。

低场核磁共振驰豫机理

固体表面对流体分子的作用力强弱决定了弛豫时间的大小即弛豫速度的快慢。总的来说,弛豫时间快慢由三个方面决定:岩样固体的表面性质;岩样内的孔隙大小;岩样中饱和流体的流体性质和流体类型。

岩石孔隙中,三种驰豫机制控制着核磁驰豫过程,分别是表面弛豫、体积弛豫和扩散弛豫。这三种机制同时存在,若满足快扩散条件,单个驰豫机制引起的驰豫速率的和就是总的驰豫速率。

岩石孔隙中的流体,存在于类似较大孔隙这种不受限空间时,流体内部会产生自由衰减过程,称之为体积弛豫,也叫自由驰豫。由于孔隙空间不受限,故体积驰豫与孔隙壁无关,与温度、流体粘度、岩石润湿性有关,主要影响因素是孔隙中流体的性质。

岩石颗粒表面润湿流体后,流体的扩散运动使得分子与岩石颗粒表面发生频繁碰撞,分子与岩石表面碰撞时,分子会把核自旋的能量传给岩石颗粒表面,于是会因自旋运动重新取向于原来磁场方向,引起纵向弛豫T1;同时,自旋相位发生不可恢复的相散,导致横向弛豫T2的加速。这个过程就是岩石表面驰豫的作用机制。岩石表面驰豫机制与岩石胶结物的性质以及颗粒表面有关。进而反映出岩石的储层物性参数。

2022-05-23 23:04:12 236 0
体积电阻率和表面电阻率有什么不同

首先第一步需要测试体积电阻值和表面电阻值,然后根据试样的尺寸和电极系数,根据计算公式得到体积电阻率和表面电阻率,体积和表面电阻测试时,对电压试样的位置不同,从而能够不同的电阻值

在接和未接试样时电容的变化量是通过这个电容器来测得。在测微计电极中,次要的误差来源于电容校正时所包含的电极的边缘电容,此边缘电容是由于插入一个与电极直径相同的试样而稍微有所变化,实际上只要试样直径比电极直径小2倍试样厚度,就可消除这种误差。首先将试样放在测微计电极间并调节测量电路参数。然后取出试样,调节测微计电极间距或重新调节标准电容器来使电路的总电容回到初始值。△G——接入试样后,(图1)的两个电容读数之差。值得注意的是在整个试验过程中试验频率应保持不变。贴在试样上的电极的电阻在髙频下会变得相当大,如果试样不平整或厚度不均匀,将会引起试样损耗因数的明显增加。这种变得明显起来的频率效应,取决于试样表面的平整度。

该频率也可低到10MHzt因此,必须在ioMHg及更高的频率下,且没有贴电极的试样上做电容的损耗因数的附加测量,假设Cw和tan<5w为不贴电极的试样的电容和损耗因数,Cw-…带电极的试样电容。在一个线路两点之间的接地屏蔽,可消除这两点之间的所有的电容,而被这两个点的对地电容所代替,因此,导线屏蔽和元件屏蔽可任意运用在那些各点对地的电容并不重要的线路中;变压器电桥和带有瓦格纳接地装置的西林电桥都是这种类型的电路。从另一方面来说,在采用替代法电桥里,在不管有没有试样均保持不变的线路部分是不需要屏蔽的。实际上,在电路试样、检测器和振荡器的连线屏蔽起来。对于100kHz数量级或更高的频率,连线应可能短而粗。


2021-09-14 14:18:42 557 0
喷漆为什么要用不同的砂纸
 
2015-03-23 16:03:07 396 4
孔隙结构的储集层孔隙结构研究方法
 
2018-11-21 06:45:40 303 0
为什么测定不同的重金属要用不同的阴极灯
 
2018-12-03 18:44:34 226 0
频率的频率测量
 
2018-11-28 11:22:09 301 0
如何实现频率测量
 
2017-09-04 08:15:57 431 1
发酵罐与储酒罐有什么不同
 
2014-09-20 12:06:10 276 1
为什么万用表在测电阻时,要用一节层节电池?
 
2010-01-18 01:53:50 449 4
储层物性特征有哪些?低场核磁共振显身手

储层物性特征有哪些?低场核磁共振显身手

储层物性是油气储集层的物理性质。储层物性特征有哪些?广义上储层物性包括储集层岩石的骨架性质、孔隙性、渗透性、含流体性、热学性质、导电性、声学性质、放射性及各种敏感性等。狭义的一般指储层岩石的孔隙率和渗透率。

低场核磁共振如何用于储层物性特征分析:

低场核磁共振储层物性特征分析是利用氢原子核在外加磁场的作用下形成核磁共振现象的这一特性,测量同一样品在不同处理阶段的核磁共振信号,从而求取储层的孔隙度、渗透率、含油饱和度、可动流体饱和度等地质参数的一项新技术。该技术克服了常规岩心分析方法成本高、测试周期长的缺点,具有用量少、速度快、成本低、获取参数多、准确性高等优点。在储层物性方面采用核磁共振技术研究并应用,能够为石油勘探提供可靠且及时的数据,对于油田开发有着重要的实际意义。

储层物性特征评价是储层评价和油气资源评价的重要内容。许多石油院校、科研院所、油田单位在积极探索室内岩石物性准确测定,低场核磁共振技术不断发展起来而且日趋完善。低场核磁共振技术分析样品由测试岩心扩展到了岩屑以及井壁取心,且不受形状的限制,具获取参数多、分析速度快、精度高、可随钻分析、耗资低等特点,并使得在现场快速分析储层物性得以实现,形成了一项特色的快速评价储层物性的核磁共振技术。

低场核磁共振驰豫机理

固体表面对流体分子的作用力强弱决定了弛豫时间的大小即弛豫速度的快慢。总的来说,弛豫时间快慢由三个方面决定:岩样固体的表面性质;岩样内的孔隙大小;岩样中饱和流体的流体性质和流体类型。

岩石孔隙中,三种驰豫机制控制着核磁驰豫过程,分别是表面弛豫、体积弛豫和扩散弛豫。这三种机制同时存在,若满足快扩散条件,单个驰豫机制引起的驰豫速率的和就是总的驰豫速率。

岩石孔隙中的流体,存在于类似较大孔隙这种不受限空间时,流体内部会产生自由衰减过程,称之为体积弛豫,也叫自由驰豫。由于孔隙空间不受限,故体积驰豫与孔隙壁无关,与温度、流体粘度、岩石润湿性有关,主要影响因素是孔隙中流体的性质。

岩石颗粒表面润湿流体后,流体的扩散运动使得分子与岩石颗粒表面发生频繁碰撞,分子与岩石表面碰撞时,分子会把核自旋的能量传给岩石颗粒表面,于是会因自旋运动重新取向于原来磁场方向,引起纵向弛豫T1;同时,自旋相位发生不可恢复的相散,导致横向弛豫T2的加速。这个过程就是岩石表面驰豫的作用机制。岩石表面驰豫机制与岩石胶结物的性质以及颗粒表面有关。进而反映出岩石的储层物性特征参数。

2022-05-25 09:50:49 291 0
电缆半导电屏蔽层电阻率测试仪的作用是什么?
 
2018-04-17 09:44:12 375 2
膳食纤维测定中为什么要用不同浓度的乙醇
 
2017-08-09 07:11:57 989 1
求简单频率测量电路
 
2018-04-18 09:33:52 387 1
断路器为什么要储能
断路器为什么要储能
2011-04-01 06:04:24 412 2
注塑机储料时间长为什么?
下料正常挤出来的料也正常,就是原本储料时间太长... 下料正常挤出来的料也正常,就是原本储料时间太长 展开
2014-04-30 08:16:36 691 1
为什么要稀土收储
 
2014-04-21 01:00:19 280 1
NMR(利用台式核磁共振)评价非常规储层水锁效应

研究背景:

水锁效应来源于油气开发过程中,当钻井液、完井液侵入石油储集层后,造成近井壁处油气相渗透率降低的现象。非常规致密储层的开发,极大的依赖水力压裂技术,而实践表明,压裂液的反排率通常很低。大量的压裂液滞留在地层中引起了水锁效应与贾敏效应(如图1),造成了储层伤害,这对非常规油气的开发是极为不利的。

从国内外研究现在来看,在石油领域的水锁效应研究较为成熟,主要体现在水锁效应机理、产生原因及解除方法上。而且,水锁效应的解除方法主要有两种:①通过改变流体表面张力改变压裂液性能;②改变岩体孔隙特征。

实验方法:

实验样品采用的煤样取自晋煤集团长平煤矿3煤层,样品信息见下表。

利用NMR实验(台式核磁)共振仪对煤储层水锁效应的解除进行研究,具体步骤为:

1.首先将取自晋煤集团长平煤矿煤样制备成直径为25 mmx50 mm的圆柱形煤样20份。

2.选择12份煤样,利用真空饱和装置对12份煤样干抽480 min,湿抽240 min,使煤样完全饱和水,对12份饱和水煤样分别进行核磁共振测试,反演T2分布。

3.将步骤2中核磁共振测试后的12份饱和水煤样,利用高速离心机分别在转速为1000一12000r/min条件下离心30 min。进行第2次核磁共振测试,反演T2分布,同时核磁共振岩心分析软件计算得出T2截止值,BVI,FFI参数,研究孔隙负压对煤层水锁效应解除方法。

孔隙负压是一种压强的表现形式,可以用离心力与煤体内表面积的比值表示。通过压汞实验和CO2吸附测试,可以获得煤样内表面为130平方米每克,因此可以计算孔隙负压。

实验结果:

图2为12份原煤样NMR的T2分布图,图3为煤样在不同离心机转速离心后的T2分布。在不同离心机转速条件下由核磁共振岩芯分析软件计算得出的水锁效应参数,见表2。


图2. 饱和煤样的T2分布

由图2可知,对于12份原煤样其内部孔径分布特征基本相同。煤样在不同转速条件下离心后,如图3所示,当离心机转速从1000 r/min增加到7000 r/min过程中,第1弛豫峰逐渐降低,但基本保持稳定,第2弛豫峰和第3弛豫峰不变;当离心机转速达到10000 r/min时,3个弛豫峰均明显降低;当转速继续增加到12000r/min时,第1弛豫峰趋于稳定,第2弛豫峰和第3弛豫峰基本消失。


图3. 不同离心转速下的T2分布

由表2可知,在离心机转速从1000 r/min逐次升高到12000 r/min时,煤样所受的孔隙负压从12.8Pa升高到1108.1Pa。T2截止值和BVI随转速的增加有降低趋势,而FFI随转速的增加而增加。T2截止值、BVI和FFI随转速的变化趋势如图4,5所示,据此划分出三个阶段。


表2. 不同离心转速下参数表


(1)稳定I阶段:离心机转速为0一7000 r/min,

T2截止值保持在18.6 ms不变,BVI和FFI亦分别稳定在98%和2%。说明此时孔隙内部饱和水分含量基本没有变化。此阶段离心机转速产生的离心力以及等效的孔隙负压不足以使大孔隙的水分与煤体分离,更不会驱使小孔隙的水分向大孔隙流动,对煤样中的水锁效应没有产生影响,水锁效应没有解除。若在煤矿井下实际抽采过程中,当煤层内的孔隙负压小于360.9Pa时,煤层内的外来水会堵塞煤体孔隙,封锁瓦斯流动通道,产生煤体水锁效应。


(2)降低阶段:离心机转速为8000~10000 r/min,T2截止值从18.7 ms降低到10ms,在此阶段,BVI降低,FFI增加。煤样孔隙内的饱和水分含量开始变化,大孔隙的水分开始与煤体离,小孔隙的水分也开始向大孔隙移动,并且一部分小孔隙的水分经过大孔隙也与煤体分离。


(3)稳定II阶段:离心机转速为10000~12000 r/min。此阶段煤样孔隙内水分含量又趋于稳定,大孔隙内基本没有水分的存在,而只有存在极微小孔隙内残留的水分,此时T2截止值稳定在10 ms。在此阶段,煤样大孔隙内水分再不会减少,微小孔隙内残余的水分也不会再与煤体分离。此时,对应的孔隙负压为769.6Pa,即在井下煤层中的孔隙负压为769.6Pa时,可以抽出大孔隙的水分,并且使小孔隙内水分通过大孔隙运移到煤层裂缝中,消除水分对煤层孔隙的封堵,解除瓦斯抽采过程中的煤层水锁效应。


图4. T2截止值随离心转速的变化


图5. BVI值与FFI值随离心转速的变化

结论:


为提高煤层瓦斯抽采效果,提出利用NMR无损害测试水锁效应的方法,从孔隙负压角度对煤层水锁效应解除方法进行实验研究。结果表明:随孔隙负压的增加,核磁共振T2截止值可分为3个阶段:稳定一降低一稳定阶段。当煤层内的孔隙负压小于360.9Pa时,煤层内的外来水会堵塞煤体隙,产生煤体水锁效应;当孔隙负压大于769.6Pa时,能够消除水分对煤层孔隙的封堵,解除煤层水锁效应。

参考文献:
倪冠华,李钊,解宏超.基于核磁共振测试的煤层水锁效应解除方法[J].煤炭学报, 2018,43(08):2280-2287.




(来源:苏州纽迈分析仪器股份有限公司)

2019-10-24 13:31:32 507 0

5月突出贡献榜

推荐主页

最新话题