全部评论(2条)
-
- 肥妹漂移 2016-05-28 00:00:00
- 冻干机型号中的数字代表该型号冻干机的冻干面积,例如,LGJ-18C型冻干机的冻干面积为0.18㎡。用户应根据自己的需要,通过计算来确定需用多大冻干面积的冻干机。例如每批需冻干1.8公斤(升)液体量的产品,用物料盘装载物料,每盘装载10㎜厚,则可计算得冻干板层的负荷面积: A(面积,㎡)=V(体积,m)/H(高度,m)=0.0018m/0.01m=0.18㎡ 即需选用板层负荷面积为0.18㎡的冻干机。 冷阱是冷冻干燥过程捕获水分的装置,理论上讲,冷阱温度越低,冷阱的捕水能力越强,但冷阱温度低,对制冷要求高,机器成本及运转费用高。实验系列冷冻干燥机的冷阱温度主要有-45℃左右、-60℃左右、-80℃左右等几个档次。冷阱温度为-45℃的冻干适用于一些容易冻干的产品,冷阱温度为-60℃左右的冻干机适用于大部分产品的冻干,冷阱温度为-80℃的冻干适用于一些特殊产品的冻干。冷阱温度对捕水能力的影响实验表明冷阱温度从-35℃下降到-55℃,捕水能力有提升明显,冷阱温度低于-55℃,冷阱的捕水能力提升不明显。因此,在没有特殊需求的情况下,选用冷阱温度-60℃左右是理想的选择。四环冻干机中LGJ-10D型冷冻干燥机的冷阱温度≤-55℃,LGJ-18系列、LGJ-25系列的冷冻干燥机的冷阱温度≤-60℃,并且采用混合工质制冷技术,在同样制冷机组的情况下,制冷温度低、制冷量大、工作稳定性高、故障率低。四环冻干机还包括有冷阱温度≤-45℃的LGJ-10型冷冻干燥机,适用于一些容易冻干的产品的冻干。LGJ-50C型冷冻干燥机的冷阱温度≤-80℃,特别适用于医药和特殊产品的冻干。 3、降温速率 降温速率体现制冷系统的制冷能力,在空载情况下,冷阱温度应在1小时内达到指标规定的Z低温度。例如,冷阱温度≤-60℃的冻干机,机器从打开制冷开始计时,冷阱温度达到-60℃的时间应不大于1小时。 4、极限真空度 极限真空度体现冻干机的泄漏情况及真空泵的抽气效率。冻干箱的真空度,过去的观点认为真空度是越高越好,行业内的观点认为真空度应在一个合理的范围之内。真空度太高了,不利于传热,干燥速度反而下降,但无论如何冻干箱的空载极限真空度应达到15Pa以上。 5、抽真空时间 冻干箱空载的抽空速度,应在半小时之内从大气压抽到15Pa。 6、板层温度均匀性及平整度: 板层温度的均匀性和平整度,对产品质量的均一性有很大的影响,温度均匀性和平整度越好,则冻干产品质量的均一性也越好。冻干机搁板温度控制有加热器型和中间流体型,采用中间流体控制板层的冻干机搁板温度均匀性和平整度好,这种冻干机板层为空心夹层结构,板层的制冷和加热均通过中间流体在板层内部的流体通道循环来实现,因此板层温度均匀一致。四环冻干机中LGJ-50C型冷冻干燥机就采用搁板中间流体的技术。钟罩型冻干机的搁板温度控制基本上都是采用加热器,板层温度一致性稍差。但总体而言,医YY冻干机板层温差应控制在±1.5℃,板内温差为±l℃ ,食品冻干机可适当放宽。 7、控制系统 冻干机的控制系统类型及功能各异,对于实验系列的冻干机,主要应用于物料的冻干工艺摸索和少量试生产。因此,控制系统应可实时显示冻干过程参数并自动记录;设定、修改及有效地执行冻干工艺程序;具备通讯接口,便于数据采集、保存。
-
赞(11)
回复(0)
-
- 柠凉593i 2018-07-31 00:00:00
- 1、冻干面积 冻干机型号中的数字代表该型号冻干机的冻干面积,例如,LGJ-18C型冻干机的冻干面积为0.18㎡。用户应根据自己的需要,通过计算来确定需用多大冻干面积的冻干机。例如每批需冻干1.8公斤(升)液体量的产品,用物料盘装载物料,每盘装载10㎜厚,则可计算得冻干板层的负荷面积: A(面积,㎡)=V(体积,m)/H(高度,m)=0.0018m/0.01m=0.18㎡ 即需选用板层负荷面积为0.18㎡的冻干机。 2、冷阱温度 冷阱是冷冻干燥过程捕获水分的装置,理论上讲,冷阱温度越低,冷阱的捕水能力越强,但冷阱温度低,对制冷要求高,机器成本及运转费用高。实验系列冷冻干燥机的冷阱温度主要有-45℃左右、-60℃左右、-80℃左右等几个档次。冷阱温度为-45℃的冻干适用于一些容易冻干的产品,冷阱温度为-60℃左右的冻干机适用于大部分产品的冻干,冷阱温度为-80℃的冻干适用于一些特殊产品的冻干。冷阱温度对捕水能力的影响实验表明冷阱温度从-35℃下降到-55℃,捕水能力有提升明显,冷阱温度低于-55℃,冷阱的捕水能力提升不明显。因此,在没有特殊需求的情况下,选用冷阱温度-60℃左右是理想的选择。 3、降温速率 降温速率体现制冷系统的制冷能力,在空载情况下,冷阱温度应在1小时内达到指标规定的Z低温度。例如,冷阱温度≤-60℃的冻干机,机器从打开制冷开始计时,冷阱温度达到-60℃的时间应不大于1小时。 4、极限真空度 极限真空度体现冻干机的泄漏情况及真空泵的抽气效率。冻干箱的真空度,过去的观点认为真空度是越高越好,现在的观点认为真空度应在一个合理的范围之内。真空度太高了,不利于传热,干燥速度反而下降,但无论如何冻干箱的空载极限真空度应达到15Pa以上。 5、抽真空时间 冻干箱空载的抽空速度,应在半小时之内从大气压抽到15Pa。 6、板层温度均匀性及平整度: 板层温度的均匀性和平整度,对产品质量的均一性有很大的影响,温度均匀性和平整度越好,则冻干产品质量的均一性也越好。冻干机搁板温度控制有加热器型和中间流体型,采用中间流体控制板层的冻干机搁板温度均匀性和平整度好,这种冻干机板层为空心夹层结构,板层的制冷和加热均通过中间流体在板层内部的流体通道循环来实现,因此板层温度均匀一致。冷冻干燥机就采用搁板中间流体的技术。钟罩型冻干机的搁板温度控制基本上都是采用加热器,板层温度一致性稍差。但总体而言,医YY冻干机板层温差应控制在±1.5℃,板内温差为±l℃ ,食品冻干机可适当放宽。 7、控制系统 冻干机的控制系统类型及功能各异,对于实验系列的冻干机,主要应用于物料的冻干工艺摸索和少量试生产。因此,控制系统应可实时显示冻干过程参数并自动记录;设定、修改及有效地执行冻干工艺程序;具备通讯接口,便于数据采集、保存。
-
赞(11)
回复(0)
热门问答
- 真空冷冻干燥机的选购冻干机时应注重的几个参数
- 真空冷冻干燥机是冻干机吗?
- 真空冷冻干燥机需要几个电动机
- 选购冷冻干燥机应该注意哪几个参数
- 选择逻辑分析仪时应该注重哪些参数?
- 冷冻干燥机(冷冻干燥机、冻干机、冷干机)是做什么用的?
- 真空冷冻干燥机的简介
- 真空冷冻干燥机的特点
- 真空冷冻干燥机的工作原理
- 四环冻干机—真空冷冻干燥特性参数测量与分析(八)
4.6 冻干产品的贮藏与复水
4.6.1 真空或充气包装
已干燥产品是一种疏松的多孔物质,有很大的内表面积。如果暴露于空气之中,就会吸收空气中的水分而潮解,增加产品的残余水分含量。其次,空气中的氧、二氧化碳与产品接触,一些活性基团就会很快与氧结合产生不可逆的氧化作用。此外,空气中如含有杂菌,还会污染产品。因此,在产品干燥后,能直接在真空箱内密封,使之不与外界空气接触。现在比较先进的冻干机都具有这种功能。因此,冻干产品的贮藏应该从第二阶段干燥结束以后开始。
由解吸等温线可知,在平衡条件下,产品中吸附水分的量在给定温度下是水蒸气压力的函数,如图4-53所示。在给定温度下,在很短的时间内可近似认为是平衡状态,在第二阶段的工作压力应该小于平衡蒸气压,例如,当温度为+40℃,预期残余水分小于1%时,pch应该为几帕。如果产品(血浆)的温度只有+20℃,则工作压力应该比1Pa还小。通常情况,延长干燥时间不能降低残余含水量——只有升高温度才能降低残余含水量。要想得到较低的含水量,吸湿性的产品应防止在干燥室中再次吸入已被干燥除去的水分。如果使用小瓶,应在干燥室中密封。如果是散装的物料或食品,干燥后应该往干燥室中充入干燥空气或惰性气体。在+20℃,相对湿度为70%时,空气中的水分约为1.3×10-2gH20/L。往体积为200L的干燥室充入该气体时,将引入2.6g的水蒸气。如果干燥室中有300个小瓶,每个小瓶装有固体含量为10%的1cm3的物料,则残余含水量将增加约9%。如果固体含量只有1%,则残余含水量增加到90%。充入气体的露点应该与第二阶段的最终压力相对应,例如,最终压力为2Pa,气体的露点应为-55℃,最小应为-50℃。
因此,冻干产品应在二次干燥结束后采用真空或充氮气包装,包装材料的渗透性差,贮藏运输过程应避光。
4.6.2 冻干产品的复水
理论上,冻干制品复水后能恢复原有的性质和形状。实际上要让冻干后的产品完全恢复原有的特性,不仅受冷冻干燥过程影响,复水条件也是很重要的,比如复水液,复水速率,复水温度,复水率等都会影响复水后制品的特性。如人红细胞、角膜等在冻干过程中,大部分水分都被除去,要恢复其基本生理功能,必须进行复水,为细胞创造一个与体内细胞生存环境基本相符的条件。牛肉,方便米饭,牡蛎、海参等冻干的食品在食用的时候应复水恢复其原有的形状,色泽及口感等。咖啡、青霉素等药品在使用的时候应能速溶。不同的物料复水条件和过程都不一样,通常用实验的方法确定。
- 四环冻干机—真空冷冻干燥特性参数测量与分析(七)
4.5.2 冻干产品的质量及其变化
假设冻干本身是在最优条件下进行的,而且在冻干过程结束时产品达到了预期的质量,冻干产品在存储过程,其质量变化至少受三个因素的影响:残余水分,存储温度及混合在包装袋里的气体。与其中一种因素有关的或在更多情况下与三种因素都有关的变化可分成以下四种情况:
①在与水分子的重组过程发生的变化和/或溶解性;
②干燥产品的化学反应;
③产品生物-医学活性的恶化;
④产品物理结构的变化,例如:由非晶形转变为部分或全部晶体结构的形式。
通常发生的变化可由这几种变化中的某几种解释。下面给出了几个典型例子。
Liu和Langer证明BSA,卵清蛋白、葡萄糖、氧化酶和β—乳球蛋白在37℃时溶解性迅速减小,并且如果在已干产品中加入了30%(质量分数)生理盐水缓冲液,则在24h内97%的产品将变为非溶解性的。由于水分而引起的聚集归因于分子间的S一S键。对于给定的白蛋白,如果RM为最优值则可减少聚集。
Zhang等人研究了在keratonocyte增长因子(KGF)重组过程重组介质对形成聚集的影响。若干添加剂可使聚集明显地减小,调节重组介质离子的强度发现也有类似的作用。优化重组条件可增加蛋白质可溶性的恢复;对于KGF,蛋白质溶解性的恢复与本身的、单节显性的组成有关。此外,Zhang等人还发现当用纯水重组时,白细胞素-2(Ⅰ)和核糖核酸酶(Ⅱ)在+45℃的温度下存储时聚集相当大。如果在重组水中加入肝磷脂或磷酸盐可明显减少聚集的长度。Shalaev等人研究了在RM<0.1%时,非晶形蔗糖对葡萄糖和果糖酸性催化转化作用。即使RH=0.1%,在50℃冻干蔗糖时,例如带有柠檬酸,也得经受酸催化转化,作者得出的结论是冻干带有蔗糖的酸性物质即使是RM很低也会产生能够进一步和其他成分起反应的物质。
Yoshika等人利用ONMR光错学研究了在存储过程中β-牛乳糖间的反应和水的迁移率有关。水分的增加也使自旋-晶格弛缓时间T₁增加,相互之间的反应与T₁的关系比pH值的关系还要紧密。设想可能是水的增加使酶周围的水的迁移增加,从而使酶的反应增加。带有少量水的冻干样品,也表现出比根据pH值和水的迁移率估计的还要快的反应速度,这可能是由冻干时所用的添加剂盐引起的。Yoshika等人也使用了NMR光谱学,但用的是¹H自旋-自旋独缓时间T₂。测得BSA和γ-血球素的T₂是随水合程度而变化的。冻干的BSA和BGG如果水分超过大约0.2%(g/g)蛋白质,则对聚集变得敏感。蛋白质质子的T₂在水分较低时就开始增加,且随水分的增加聚集也紧跟着增加。对于冻干的BGG,在水分>0.5g/g蛋白质时蛋白质质子的聚集和T₂都将减小。
Vromans和Schalks利用非晶形维库溴铵研究了水敏性药品的稳定性。在制剂中其分解主要取决于水的活度αW,而不是水分的多少。赋形剂的玻璃化不仅有低温保护作用,而且起稳定作用。Cleland等人发现当蔗糖和蛋白质具有适当的分子比率时,在40℃可稳定保存人类单克隆抗体重组细胞(ruhMAb HER2)33个月。360:1的摩尔比率可成功地稳定蛋白质。这比通常的制剂中所用的等渗浓度低3~4倍。Souillac等人比较了冻干和物理混合的h-Dnase、rh-GH和rH-IGF-1和甘露醇、蔗糖、海藻糖和右旋糖苷的焓。对物理混合物,发现焓与蛋白质的百分含量呈线性关系;对冻干的混合物此关系是非线性的。作者得出的结论是在冻干的混合物中蛋白质和碳水混合物之间会直接发生反应。
Hsu等人发现已包装的产品也有可能发生分解。设想冻干结束时只具有单分子层的水,且不是均匀分布的,但是在有些位置分子可能连成串。在干燥和存储过程这些水提供的保护以防止变性。这点是由基因技术产生的两种产品证明的:太少的水,比单分子层还少,造成tPA和高铁血红蛋白在物理上的不稳定,然而较高含量的水却导致存储过程生物上的不稳定。
To和Flink以及van Scoik和Carstensen阐述了四种变化的例子:依To和FIink的观点,非晶形到晶体的转变或者是因为存储温度T(T>TC)太高,或者是因为吸收了水。(注:较多的水增加了非晶形固体的流动性,促进了晶体的成核和增长)。
Van Scoik和Carstensen交流了他们关于蔗糖晶体成核和增长的经验。讨论了温度和残余水分这两个成核参数,建议用添加剂可停止、延缓或加速成核。用来清洗装有小瓶的干燥室的气体和加入产品的包装袋里的气体的影响尚且不清楚。只是氧气在多数情况下被排除。Spiess建议用干空气存储花椰菜和蓝莓,然而胡萝卜和辣椒粉应该存储在氧气含量<0.1mgO₂/g干物质的气体中。对于药品,病毒或细菌,无法给出普遍的建议,由于CPA、添加剂的结构、缓冲剂的影响都应考虑。
所有气体的纯度也应该做详细说明,由于一定量的杂质对存储特性有可能起决定性的作用,例如从瓶塞中解吸出的气体。Greiff和Rightsel证明流行性感冒病毒在没有CPA的情况下当RM为1.6%时在氨中的传染性保持得非常好。如果使用通常的存储温度,在氩中,传染性减小大约10倍,在氧气中减小20多倍。Corveleyn和Remon冻干了两种不同的包含25mg二氢氯噻的药片制剂。药品用PVC/铝塑包装、聚偏二氯乙烯(PVDC)/铝塑包装、带干燥剂的密闭容器和非密闭容器在60℃以三种RH,45、60和85%存储。一个月后,除了包装在PVDC/铝塑包装中的药片以外,其余药RM都由2.7%增加到6.8%。水分为7.2%的制剂崩塌。PVDC/铝塑包装中药片的水分的增加或减少非常慢。用于包装冻干药片的材料没有一种能阻止水分的吸收和结构的崩塌。
- 四环冻干机—真空冷冻干燥特性参数测量与分析(一)
4.1共晶点和熔融点温度的测量
溶液的导电是靠带电离子在溶液中定向移动来进行的。在溶液冻结过程中,离子的漂移率随温度的下降而逐渐降低,使电阻增大。只要还有液体存在,电流就可流动。但一旦全部冻结成固体,带电离子不能移动,电阻就会突然增大。根据电阻由小突然变大这一现象,就可测出溶液的共晶点。反之,当冻结物料的温度升高时,物料的电阻值会突然减小,这一过程可用于测定物料的熔融点温度。
4.1.1 简易自制测量装置
东北大学自制的共晶点和熔融点测试装置如图4-1所示。物料的制冷和加热在冻干机搁板上进行。不锈钢电极直径为2.5mm,长度为20mm。两电极间的距离为15mm,插入物料的深度l0mm,电极间需要夹紧装置,以避免电极与物料接触不良。测温热电偶的测量端位于两电极的中间部位。电极和热电偶装配后,将物料置于冷冻干燥机内的搁板上,降低搁板温度,冻结物料,测量物料的电阻与温度间的变化关系,用相应软件如Origin处理测得的数据,求出其一阶导数曲线,可找出电阻突变点,从而确定物料共晶点温度。升高搁板温度,测量物料升温过程电阻和温度的变化关系,用相应软件如Origin处理测得的数据,求出其一阶导数曲线,找出电阻突变点,确定物料的熔融点温度。
用上述自制测量装置测得降温过程中螺旋藻电阻R随温度T的变化如图4-2所示,为使电阻突变的点显得更明显,对图4-2求一阶导数,得图4-3,由图4-3可知,在-18℃左右电阻的变化最快,由此可知螺旋藻的共晶点温度在-18℃左右。
升温过程中螺旋藻的电阻R随温度T的变化如图4-4所示,图44一阶导数曲线如图4-5。由图4-5可知,在-19~-7℃左右电阻的变化最快,由此可知螺旋藻的熔融点温度在-19℃左右。
降温过程纳豆激酶溶液的电阻R与温度T之间的关系如图4-6所示,图4-6的一阶导数曲线如图4-7所示,分析图4-6和图4-7可知纳豆激酶溶液的共晶点温度在-23℃左右。
升温过程中纳豆激酶的电阻R随温度T的变化如图4-8所示,图4一8一阶导数曲线如图4-9所示,由图4-9可知,在-23~-15℃左右电阻的变化较大,由此可知纳豆激酶溶液的熔融点温度在-23℃左右。
降温过程鲜海参肉的电阻R与温度T之间的关系如图4-10所示,图4-10的一阶导数曲线如图4-11所示,由图4-11可知鲜海参肉在-30℃以后电阻增加非常快,分析图4-11,在-35℃以后,电阻值增量非常大,由此可知,鲜海参肉的共晶点在-35℃左右。
4.1.2一种典型液态物料共晶点测试仪
由四环福瑞科仪科技发展(北京)有限公司生产的液态物料的共晶点测试仪如图4-12所示,图4-13是共晶点测试仪测量探头工作示意图。
如图4-12和图4-13所示,该共晶点测试仪主要由以下几个部分构成。
1、开关 开关打到“开”位置,即开始正常工作,随着物料的冷冻或升温测试仪自动测量判断共晶点或熔融点;打到“关”位置,系统断电,设备停止运行。
2、LCD显示屏 LCD显示屏实时显示物料的当前温度以及共晶点和熔融点,其第一行显示的Tnow为温度探头测量得到的当前温度,第二行显示的为测量得到的共晶点和熔融点,其中Tj为共晶点,Tr为熔融点。
3、测量探头及支座 共晶点测试仪的温度探头采用加长的P1000温度探头,阻抗探头采用特殊定制的不锈钢探针。为了实现探头的固定以及确保其相对位置,探头支座采用聚四氟乙烯材料加工装配而成,探头测量高度可通过高度调节旋钮进行调节,以适应不同高度的西林瓶和物料液面。
4、探头接口 用于测量探头与测试仪主体连接,开始测量前,须确保探头插头与测试仪主体可靠对接。
其使用操作步骤为:
1、将待测试的物料装入西林瓶中,调节支架高度,使共晶点测试仪的探头能浸入物料液面下,再锁紧调节螺钉。
2、将测试仪探头、支架以及装有物料的西林瓶放入冻干机内,关闭冻干机门。
3、将共晶点测试仪的电源插头插入220V交流电源插座中。
4、打开电源开关,共晶点测试仪即自动进入共晶点、共熔点测定程序。此时开启冻干机进行相应冷冻与加热操作即可。
此共晶点测试仪的主要特点是,智能化自动判断物料共晶点和共熔点,采用两行式液晶显示屏,直接显示物料的共晶点和熔融点,能实时显示当前物料温度,仪器性能稳定、可靠,操作简单。
- 四环冻干机—真空冷冻干燥特性参数测量与分析(二)
4.2冻干过程的分析与观察
4.2.1 低温显微镜
Hsu等将重组CD4-IgG(CD4-免疫球蛋白G)用四级串联的帕耳帖组件冷却至-60℃,用一架低温显微镜观察到了它的再结晶过程。他的观察室也可以被抽成真空而用于冷冻干燥研究。
Willemer将多次由低温显微镜获得的照片与电阻测量的结果进行了比较,低温显微镜的结构如图4-14所示。复杂产品的电阻测量有时很难解释清楚。图4-15所示的是某种病毒的低温保护溶液的电阻-温度曲线。冷却到-10℃,部分溶液冻结,然后过冷到约-46℃,在-65℃左右时溶液结晶。在溶液复温过程中,在-32.5℃左右时,电阻值变化迅速。用低温显微镜获得的照片显示出,在-40℃时,已被干燥和冷冻的两部分都呈现出均匀的组织结构(如图4-16)。而在-30℃时,这两部分都呈现出了黑色和灰色混合的区域,这表明,一些冰已经融化,并且扩散到了已干燥的部分。在这种情况下,通过改变CPA的浓度以及选择一个最佳的冷却速度,电阻测量可以认为是一种比较迅速的研究不同CPA的影响的方法。最终选择的浓度和冷却速度的组合可以用低温显微镜来测试。图4-17所示的是在冷冻、热处理过程中以及在干燥前,一种药品在低温显微镜下的结构变化。图4-17~图4-19所示的是来自同一实验中,同一样品的不同部分以及在不同的实验阶段的细节照片。
图4-17中,(a)是快速冷却过程中,约在-24℃时样品的照片,(b)是第一次从-54℃加热到约-36℃的照片,(c)是再次被冷却到-54℃时的照片。在图(a)中,大部分晶体(颜色较深处)均匀地分布在浓缩的非晶固体(颜色较亮处)中间。在图(b)中,晶体有所生长,浓缩物中的水分也已经结晶。在图(c)中,晶体与玻璃状杂质的边界清晰可见,特别是在图中右上角更明显。图4-18所示的是在一些具有可比性的温度下,样品另外的一个部分,即靠近样品边界的显微照片:(a)约在-23℃,(b)第一次加热时,约在-30℃,(c)再次冷却到-60℃。图(b)中,晶体已有所生长,但其大致结构没有太大的变化,特别是在图的左上角部分。在图(c)中,晶体与玻璃状物质的边界更加清晰。图4-18所示的是样品的第三部分:(a)冷却到一65℃之后的照片,(b)热处理后,再次冷却到-60℃,然后在-40℃开始冻干。同样,热处理并未使整体结构有所改变,但是晶体结构更加清晰,这表明玻璃相和晶体之间的水分子已经迁移到晶体中。图4-17~图4-19中的照片说明,快速冷却不能使整个样品的各个部分形成均匀的组织结构,因为它会受到边界效应的影响。但是,在样品的所有部分都观察到了热处理的影响。图4-20所示的是,从冷却结束温度(-60℃)上升到开始干燥温度(-42℃)时,不经热处理对晶体生长的影响。值得注意的是,在自动向低温搁板上装载产品时出现的现象。第一次装载药瓶中的产品与后来装载的,例如2~3h后装载的,产品有不同的结构。
低温显微镜研究的优点是有可以显示样品组织结构变化过程的照片,而且,冻结的产品可以在大多数的设备中被冷冻干燥。产品层很薄,因此可以被迅速冷冻。所以,产品在复温和干燥过程中所表现出的性状特征与快速冷冻过程的相一致。因为产品层很薄,故模拟热处理的过程很困难。然而,实验表明,从此项研究中获得的临界温度是有价值的,特别是获得冷冻速率相对缓慢时产品的电阻值。
Nunnerf使用一台特殊的低温显微镜拍摄到了0.9%的NaCl溶液在360s内直接冷冻到稳定树枝状冰晶结构的过程中冰晶边界面变化的照片(如图421)。在冰晶的表面可见因浓缩而集中起来的NaCI(黑色边界)。
Cosman等人描述了一台可以定量评价照片的低温显微镜,该装置有如下四个显著特点:
①温度的产生、测量和控制是由程序控制的;
②显微照片可以存档,以备后用;
③文档可部分地用于自动图像识别;
④如果冷冻过程可以用数学的方法描述,而且细胞的行为可以预测,则用上述方法可以减少数据量。
图4-22表示的低温显微镜系统的布置图。通过使用热传导性非常优良的蓝宝石观察窗和使用液氮冷却系统,作者实现了以每分钟几百度的冷却速率冷却到一60℃,而且在温度为0℃时,样品内的温度梯度达到了0.1℃/mm。
下面用三个例子来说明使用这种显微镜系统如何进行冷冻过程的定量研究和存档。图4-23表示的是被分离的老鼠胰岛细胞的体积与温度的函数关系曲线。如图4-24所示,细胞膜对水和CPA的渗透性的不同对细胞的冷冻是非常重要的。
将猕猴卵母细胞置入体积分数10%的二甲基亚砜溶液(DMSO)后其体积几乎减少到原来的三分之一,这是因为水能从细胞里扩散到周围环境中去,而二甲基亚砜却不能扩散到细胞内(测量温度为23℃)。
细胞损坏的原因在于细胞内冰晶成核。图4-25表示在不同冷却速率下,有多少老鼠卵母细胞内发现胞内冰与温度之间的函数关系曲线。老鼠肝细胞在以大约40℃/min的速率冷却到-21℃的过程中没有发现胞内冰,然而,当以140℃/min速率冷却时几乎所有的细胞内都存在冰,这是因为水没有足够的时间扩散到周围环境就被冻结在细胞内。图4-25也说明细胞内冰晶成核是由绝对温度和冷却速率决定的:在大约-25℃,以5℃/min速率冷却几乎所有的细胞内都有冰,然而,以3.5℃/min速率冷却,大约20%的细胞内没有冰。
Dawson和Hockley利用扫描电子显微镜(SEM)表明了海藻糖和甘露醇溶液的快速冷冻(150℃/min)和慢速冷冻(1℃/min)时结构上的差异。图4-26表示1%海藻糖溶液被(a)慢速和(b)快速冷冻时中心部位的表面结构。慢速冷冻样品(c)浓缩的固体表面上产生裂缝,然而,快速冷冻的样品的结构却是均匀的纤维状。图4-27表示慢速和快速冷冻1%乳糖时其中心部位粗糙的(a)和精细的(b)结构。在图4-28(a)中可发现海藻糖溶流崩塌的部分,图(b)表示干燥后产品在潮湿的环境下贮存6个月以后的结构,图片表明不同的冷冻速率导致不同的结构,且有可能使固体浓缩在表面上,在干操过程使干燥速率降低,残余水分含量增加。
- 四环冻干机—真空冷冻干燥特性参数测量与分析(四)
4.2.4 热力学分析
Carrington等人利用热力学分析(TMA)研究了30%质量分数果糖、蔗糖和葡萄糖在有和没有羧甲基纤维素钠(CMC)存在时冰的结晶温度。TMA被用来测量冷冻和复温过程样品的膨胀,利用DSC也做了类似的研究。用TMA测得果糖在有和没有CMC存在,以5℃/min的速率冷冻时的具有代表性的结果如图4-39所示。图4-40表示的是由TMA确定的30%蔗糖溶液慢速冷冻和热处理后的加热曲线。图4-41表示的是由DSC确定的30%蔗糖溶液慢速冷冻和热处理后的加热曲线。比较由两种方法测得的关于蔗糖的两个温度Tr1和Tr2(如图4-40和图4-41所示),Tr1≈-60℃(TMA)和-41.2℃(DSC),Tr2≈-35℃(TMA)和-32.6℃(DSC),很明显,正如作者所讨论的那样,有很多因素影响最后所得的数据。
TMA测量对解释在加热冷冻的甘露醇和其他立体异构体溶液过程中,小玻璃瓶的破裂是很有用的。例如,甘露醇在-25℃以上体积比标准1型无色玻璃扩大30倍。小玻璃瓶是否破坏主要取决于填充物的体积及浓度,例如,当装满3%的甘露醇时,10%-40%的玻璃瓶子被破坏。
4.2.5 介电分析
Pearson Smith通过三个例子解释了介电分析(DEA)的优点是可提供最优的冻干工艺。结合水(两个氢键)和吸附水(一个氢健)的弛豫特性不同可用来确定冻干的结束,当吸附水解吸和结合水仍然存在时认为冻干结束。物质的介质响应与晶体的尺寸和水合程度有关。赋形剂的玻璃体形成特性和它的分子的流动性(黏性)与温度和水合密切相关。电介质的研究表明了糖溶液玻璃体形成的非阿伦尼乌斯(non-Arrhennius)行为,在温度或水合有微小变化时,黏性的变化将达好几个数量级。
Morris等人建议利用介电分析法可预测双组分物质的崩塌温度。DEA的基本情况已解释清楚了。“发射颜率”(TOF)是确定崩塌温度的分析方法。图4-42表示介质损耗因子与频率之间的函数关系曲线。作者称此曲线最低点的频率为TOF。如图4-43所示TOF随着温度的变化而变化。两直线的交叉点可确定崩塌温度。用TOF预测的10%的蔗糖、10%海藻糖、10%山梨糖醇以及11%的
Azactam TM溶液的崩塌温度稍低于冻干显微镜观察得的崩塌温度,偏差分别为-3℃,-1.4℃,2.2℃和0.7℃。
Smith等人认为介电弛缓频谱学提供了一种研究聚合物和蛋白质结构特性的方法,其中,还提供了含水量和水的状态信息。
4.2.6 X射线衍射学-拉曼光谱学
Cavatur和Suryanarayanant研制了一种低温X射线粉末衍射(XRD)技术,用于研究冻结水溶液中溶质的固体状态。在冻结的乙氧萘青霉素钠溶液(质量分数22%)中,未发现共晶结晶。在-4℃热处理可引起溶液的结晶,且随热处理时间而增加,另外两种产品的研究表明,XRD在不干涉其他事件的情况下,可提供结晶程度的信息。
Sane等人利用拉曼光谱学用数量表示了冷冻干燥和喷射干燥过程结构的变化。单克隆抗体类(例如RhuMAbVEGF)在没有低温保护剂的情况下,经历二次结构变化。增加低温保护剂的摩尔比率可完全保护其结构。利用拉曼光谱学观察到干燥蛋白质的长期稳定性是与结构变化相关的。
- 四环冻干机—真空冷冻干燥特性参数测量与分析(五)
4.3 冻干过程中物料含水量的测量
(1)称重法 这是一种古老的方法,也是直接测量法。在冻干箱内设置称重机构,小冻干机内可以设置天平,大型冻干机内可以设置地秤或吊秤,实现边抽真空边观察重量的变化。这种方法的优点是简单易学;缺点是不够准确。
(2)取样法 在抽真空干燥过程中,通过设置在冻干机上的装置,取出样品,在大气环境下测量产品的含水量这种方法比较麻烦,但是比较准确。取出的样品可以用直接称重法,也可以用水分测量仪测量。图4-44是一种常用的水分测量仪,称为卤素快速水分测定仪,它是一种新型快速的水分检测仪器,其原理为利用热重分析法。图4-44为OHAUS MB45型卤素水分测定仪,其测量精度可达0.001g/0.01%。
(3)在线测量法冻干过程水分在线测量是一种最准确、快速、经济的测量方法,只可惜目前还没有上市的产品。
4.4 冻干终点的判断
冻干过程结束的判断很重要,它涉及冻干产品的质量、产量和经济效益。但是,到目前为止,还没有科学的仪器和方法,现有的判断方法还是经验法,不够准确。
(1)温度判断法 在冻干过程中通常都需要测量搁板温度和物料温度,并且绘出温度曲线。当测出的搁板温度与物料温度相接近时,即可以认为干燥过程接近结束。
(2)压力判断法 在冻干过程中应该不断的测量冻干箱内的压力(真空度),当测得的压力长时间稳定不变(根据冻干产品的品种、数量不同,通常在1~2个小时即可),认为冻干过程可以结束。
(3)湿度判断法 这是一种理论上可行,但实际操作比较困难的方法。这种方法需要在冻干箱内装上湿度计,测出冻干箱内气氛的湿度,进而判断干燥工艺是否可以结束。
4.5 冻干产品的质量分析
4.5.1 残余水分的测量
产品残余水分的测量应除去从周围环境中吸收的水分。将干燥产品装入其他容器时,或称量的时候都应该在充满干燥气体的箱子或隔离器中进行。
箱子应该能容纳P2O5,或可用干燥气体清洗。在隔离器中进行的时候应带上固定在隔离器上的手套。干燥气体中用来称量的天平需要做一些调整以避免静电荷,这有可能导致相当大的错误。
4.5.1.1 重量分析法
正如美国食品和药品操作规范第21项610.13条中所说的,在前几年,这种方法成为强制性的规范。被称的样品存储在温度在十20~十30℃之间的干燥室中,连同P2O5被反复称量直到质量不变为止。样品的最小量应该大于100mg,若有必要可取自多个小瓶。较高的温度可使达到质量不变的时间缩短,但是会引起更多的结合水解吸甚至使产品变质。利用这种方法,在+20~+30℃时,发现水很少被凝固到固体上。
4.5.1.2 Karl Fischer(KF)法
利用这种方法被称量的干产品被溶解在甲醇中,用Karl Fischer溶液滴定直到颜色由棕色变为黄色。视觉观察可由电流计代替,当滴定结束时,电流突然增加,这种方法样品的重量可比重量分析法减小2一4倍。为了完全地避免视觉观察产生的误差,利用电解可产生碘,用库仑定律计算水的含量,这种仪器(见图4-45)
在商业上是可得到的。用这种方法可测得的水的最小量为l0μg。Wckx和DeKlejin说明了如何使Karl Fisher法被直接使用于小瓶装的已干产品。Karl Fischer法不能直接用于在Karl Fischer试剂中能和碘起反应或不能溶于甲醇或水分无法被甲醇吸取的产品。Karl Fischer仪器如图4-46所示。
- 四环冻干机—真空冷冻干燥特性参数测量与分析(六)
4.5.1.3 热重分析法
热重分析法(TG,TG/MS)是在程序控温下,测量物质的质量随温度(或时间)的变化关系,用来研究材料的热稳定性和组分。检测质量最常用的办法就是天平。热重分析仪如图4-47所示。May等人描述了在称量过程中,如何区分质谱仪的读数是解吸出来的水的还是挥发性物质的,挥发性物质有可能来自残余溶剂或部分产品的分解。
当前卤素快速水分测定仪是一种新型快速的水分检测仪器,其原理就是利用热重分析法。
May等人用TG,TG/MS,KF法和一种命名为“蒸气压湿度测量法”(VPM)的新型测量方法研究了α-干扰素和美国标准百日咳疫苗的残余水分(RM)。VPM测量密闭小瓶中物料上面的空间中水的蒸气压。来自红外二极管的光线穿过小瓶到达图像探测器。小瓶的温度从室温以固定的速率冷却到一55℃。当水蒸气冷凝的时候,由于凝结物使光束变暗,从而改变图像探测器的信号。凝结温度可转化为压力,从而可计算出顶部空间中水的微观图。图4-48表示α-干扰素的TG值。抽取的三种不同样品中,发现RM的平均值为1.15%土0.15%。利用KF法发现一种样品中的RM为1.28%。图4-49表示百日咳疫苗样品9的相应数据。水的最终解吸温度和开始分解的温度由重量随时间变化的函数的导数曲线确定(%/mi);当导数曲线偏离水平线时可认为水的解吸结束。在表4-1总结了不同方法我得的结果,VMP不能提供关于产品RM的值息。该方法可重复测量同样的小瓶在一段时间内产品上空的水分,从而确定水分的变化量。
4.5.1.4 红外光谱学
Lin和Hsu描述了用近红外线(NIR)光谱学确定密封的玻璃瓶中蛋白质类药品的残余水分的方法。研究了五种蛋白质:人类单克隆抗体重组细胞(ruhMAb)E25、ru- hMAb HER2、rubMAb CDI1a、TNKase和rt-PA,在小瓶壁的水平位置上加入适量的MilliQ水可使残余水分的量增加,使水蒸气扩散到已干产品。一般情况下,1~2天后可达到平衡状态。利用常用的三种数学工具来确定复杂光谱(不同成分的重合部分或它们之间的化学反应)。研究了下列因素对IR标准的影响结果:赋形剂的浓缩,块状产品的疏松度,厚度和直径以及赋形剂和蛋白质的比率,Karl Fischer滴定数(也叫RF)被用来作为与NIR数相比较的标准。
图4-50中(a)~(e)表示5种产品RF和RNIF之间的关系。Karl Fischer滴定法依每日的操作者的不同其波动范围为士0.5%。因此,RF和RNIR之间的差别≤0.5%认为是较好的。在30~100mg/mL之间疏松度的变化≤0.5%。块状物的尺寸必须超过NIR的透深,否则测得的RNIR太小。
制剂成分允许有小的变化,然而变化较大时,例如,蔗糖由42.5mmo/L变为170mmol//L,随着浓度的增加吸收率增加(图4-51)。因此对85mmol/L的RNIR的标准不能用于蔗糖的浓度较低(42.5mmo/L)或较高(>120mm0l/L)的情况;在520cm-1时水的信号随着产品信号的改变而变化。通常情况下,对于给定的制剂和产品尺寸RNIR标准是一定的,只有在NIR测量对于充足的被反射光线具有足够长的光程以及校准产品的光谱随组分浓度的改变没有被改变的情况下,变化才是允许的。
4.5.1.5 残余水分测量方法的比较
干燥产品中的水以多种形式结合:如存在于表面的水,或多或少与干物质结合的水或以结晶水的形式存在着的水。因此,对于不同的物质,各种方法有可能会产生不同的结果。利用重量分析法和Karl Fischer滴定法测得的有些物质的RM值几乎是没什么不同的。May等人提供了四种这类物质的例子,但是如表4-2所示,利用重量分析法得到的RM值比Karl Fischer滴定法得到的小0.3%~0.6%,然而,用热重分析方法得到的RM值在误差范围内与Karl Fischer滴定法得到的值是非常接近的。在图4-52中比较了在第二阶段干燥过程,利用KF测得的RM和利用DR值计算得到的dW值。用于KF测量的小瓶当时是封闭的,上面的图表示出了平均值以及误差条。同样的药品在同一台设备上,在相同的工艺条件和相同的装载量的情况下进行了三次试验过程。利用KF测得的RM值在MD转变为SD后以士1%改变,约21h后减少为土0.5%。三次试验过程dW值都在SD阶段开始后以士0.5%改变,在21h后小于0.05%。上下曲线表明,到达最终温度后,进一步的干燥不可能再降低RM的值0.5%。根据dW也可得到相同的信息:在21h后水的解吸可忽略,由于其小于0.02%/h。此产品在所选的工艺条件下,用KF法测得1.5%的水分在此温度下及可接受的时间内不能用解吸法除去。
5月突出贡献榜
推荐主页
最新话题
-
- #DeepSeek如何看待仪器#
- 干体炉技术发展与应用研究
- 从-70℃到150℃:一台试验箱如何终结智能...从-70℃到150℃:一台试验箱如何终结智能调光膜失效风险?解决方案:SMC-210PF-FPC温湿度折弯试验箱的五大核心价值1. 多维度环境模拟,覆盖全生命周期测试需求超宽温域:支持-70℃至+150℃的极限温度模拟(可选配),复现材料在极寒、高温、冷热冲击下的性能表现;控湿:湿度范围20%~98%RH(精度±3%RH),模拟热带雨林、沙漠干燥等复杂工况,暴露材料吸湿膨胀、分层缺陷;动态折弯:0°~180°连续可调折弯角度,支持R1~R20弯曲半径设定,模拟实际装配中的微小应力,提前预警裂纹、断裂风险。
参与评论
登录后参与评论