仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

学术前沿|Z新实验室台式XAFS/XES谱仪,助力材料化学领域结构分析与应用

Quantum Design中国子公司 2019-10-15 10:48:18 480  浏览
  • 引言

        自W. C. Röntgen于1895年发现X射线以来,X射线应用技术得到了长足发展,包括X射线衍射、吸收、散射、荧光及光电子谱学等(图1a)。其中Maurice de Broglie在1913年首 次测到了X射线吸收边, 1920年Friche和Hertz首 次发现了X射线精细结构(X-ray absorption fine structure),但直到上世纪七十年代Sayers、Stern和Lytle开创性地通过傅里叶变换从X射线吸收谱中得到了详细结构参数,短程有序理论(SRO)才被人们所广泛接受。随着同步辐射光源(Synchrotron X-ray light sources)的大量应用,XAFS技术(图1b,包含XANES(X-ray absorption near-edge structure)和EXFAS (Extended X-ray absorption fine structure ))才逐渐发展成为一种非常实用的结构分析方法。由于XAFS对ZX吸收原子的局域结构(尤其是在0.1 nm范围内)及其化学环境十分敏感,因而可以在原子尺度上给出某一特征原子周围几个临近配位壳层的结构信息,包括配位原子种类及其与ZX原子的距离,配位数,无序度等,被广泛应用于物理,化学,材料,生物和环境科学等领域,解决了一系列重大科学问题。
     
    图1. X射线应用技术概括及XAFS技术分类 
     
        然而,由于XAFS技术通常依赖于同步辐射X射线光源, 而其不像其他设施容易被大众所获得,极大地限制了XAFS技术在各领域的大范围应用。近年来实验室用台式XAFS谱仪的出现,使得在实验室日常使用XAFS技术进行材料的精细结构分析成为了可能。2013年首台实验室用台式XAFS谱仪诞生于美国华盛顿大学物理系Gerald T. Seidler教授课题组,并于2015年成立了easyXAFS公司,致力于实验室用台式XAFS谱仪在的推广和应用。台式XAFS谱仪采用了独有的X射线单色器设计,无需使用同步辐射光源,在常规的实验室环境中即可实现X射线吸收精细结构的测量和分析,以极高的灵敏度和光源质量,得到了可以媲美同步辐射水平的X射线吸收谱图,实现对元素的定性和定量分析,价态分析,配位结构解析等

    工作原理

        美国easyXAFS公司的台式XAFS/XES谱仪其工作原理如图2a所示,光路图为:X射线源---球面弯曲晶体(SBCA)---X射线探测器(SDD)。其特有的罗兰环单色器工作原理如图2b所示,X射线源和SDD探测器均设有滑动杆,在X射线照射过程中,两者可以随之进行滑动调节,其中满足布拉格方程的单色X射线被SBCA重新汇聚于罗兰环的另一点,并被X射线探测器检测和收集, 从而获得不同能量的单色X射线。


     
    图2. (a)XAFS/XES谱仪光路图;(b)罗兰环单色器工作原理图

    产品特点

    美国easyXAFS公司的台式XAFS/XES谱仪具有以下特点:

    1. 台式设计,可以在实验室内随时满足日常使用(如图3)

     
    图3. 台式实验室用XAFS/XES谱仪实物图

    2. LabVIEW软件脚本控制,附带7位自动样品轮, 可以同时进行多个样品或样品参数条件下的测试 (如图4)

     
    图4. 台式实验室用XAFS/XES谱仪内部结构图及7位自动样品轮图
     
    3. 可集成辅助设备,控制样品条件,适用于对空气敏感的样品的检测或一些原位测试,如原位的锂电池或电催化实验测试,监测电极/催化材料的结构变化(如图5)
     
    图5. 手套箱内集成的台式实验室用XAFS/XES谱仪实物图
     

    4. 台式XAFS/XES谱仪具有XAFS和XES两种工作模式,可快速切换,满足不同科研试验需求(如图6所示)

     
    图6. 台式XAFS/XES谱仪(a)XAFS及(b)XES工作实物及光路示意图(插图)
     

    5. 台式XAFS/XES谱仪测得的谱图效果可以媲美同步辐射数据,如图7所示,其测得的Ni元素的EXAFS, Ce和U元素的L3-edge的XANES谱图数据与同步辐射光源谱图效果完全一致

     
    图7. 台式XAFS/XES谱仪与同步辐射光源测得的(a, b)Ni EXAFS, (c)Ce和U L3-edge XANES谱图数据对比
    6. 多种型号和配置可选,满足不同科研要求 
    7. 操作便捷,维护成本极低,安全可靠

    应用解析

        美国easyXAFS公司台式XAFS/XES谱仪已在拥有众多的用户,应用领域包括材料、化学、催化、能源和环境等等,相关成果发表在J. Am. Chem. Soc., J. Phys. Chem. C, Chem. Mater., Anal. Chem.等重要期刊。相关案例如下:


    1. 化合物价态分析

        美国华盛顿大学化学系的Brandi M. Cossairt课题组使用easyXAFS公司实验室台式XAFS谱仪对溶液相合成的金属磷化物产物的Co元素进行K边XANES谱图分析(图8),十分便捷地获得了合成产物的价态信息,通过与标准样品谱图对比,十分准确快捷的对合成产物的物相组成(CoP或Co2P)给出了鉴别,与其他方法获得的信息高度一致,如XRD,NMR等。


     
    图8. 金属磷化物的(a)合成机理图,(b)透射电镜TEM照片,(c)不同Co化合物的X射线衍射谱以及(d)台式XAFS/XES谱仪测得的不同化合物的Co K-edge XANES谱图
     

        除此之外,X射线发射谱(XES,X-ray emission spectroscopy), 又可称为波长色散X射线荧光谱(WDXRF,Wavelength dispersive x-ray fluorescence spectroscopy),通过对特定元素内层电子受激发后外层电子弛豫过程中发射的X射线荧光能量和强度进行分析,也可以精确的给出分析原子的氧化态,自旋态,共价,质子化状态,配体环境等信息。由于不依赖于同步辐射,且得益于特有的单色器设计,可以在实验室内实现高分辨宽角高通量的XES元素分析(包括P, S, V,Zn, Cr, Ni, As, U, etc. )。如图9所示,通过对不同化合物中P元素的特征Kα和Kβ轨道能级的XES谱图进行定性和定量,可以方便的得到InP量子点中精确的P元素价态及表面缺陷信息,相比于NMR等技术更加简单方便。其他的实例(如图10)还包括使用特征S元素的 Kα XES谱图对不同生物炭中的低含量S元素进行不同价态(氧化态)的定性定量分析, V, As, U和Zn的特征XES谱图,和通过Cr元素特征Kα XES谱图对塑料中重金属铬元素的价态进行分析等等。


    图9. 通过台式XAFS/XES谱仪测得的P元素特征Kα和Kβ轨道能级的XES谱图对InP量子点表面缺陷进行定性和定量分析
     
    图10. 通过台式XAFS/XES谱仪测得的Cr, V, As, U, Zn和S的特征Kα或Kβ轨道能级的XES谱图对化学物种元素的价态进行定性和定量分析

    2. 电池材料价态分析

        XAFS技术在电池材料,尤其是正极材料,在充放电过程中化学态的分析,有着重要的意义,可以帮助科学家们了解电极材料的制备过程,电池组装,运行条件等因素对其化学态的影响,有利于人们更深入地了解电池的工作原理,优化电池结构的设计。如图11所示,采用easyXAFS公司生产的台式XAFS/XES谱仪,科学家们能够方便的通过XANES技术对一系列电极材料的化学态进行分析,包括充电和放电态,如LiCoO2, VOPO4, NMC(镍锰钴三元电极材料)等等。
    图11. 通过台式XAFS/XES谱仪的不同材料中特定元素的XANES或Kα轨道能级的XES谱图来对化学物种元素(Co, V, Ni, etc.)的价态进行定性和定量分析

    3. 原位电池/催化测试

        近年来原位测试技术越来越受到大家的关注,对不同物理化学过程中材料的物理化学性能进行原位的表征,更加深入的获得材料的实时结构信息。美国easyXAFS公司的台式XAFS/XES谱仪为原位进行样品目标原子的近邻化学结构信息表征提供了可能。如图12所示,通过对锂电池正极材料LiNixMnyCo1-x-yO2在不同充放电状态下的XANES谱图进行分析,可以很方便的得到在不同充放电状态下不同金属元素Ni, Mn和Co的价态信息,为进一步电池材料和结构的优化提供重要的实验依据。
     
    图12. LiNixMnyCo1-x-yO2的化学结构示意图以及通过台式XAFS/XES谱仪测得的金属Co, Mn和Ni在不同充放电状态下的XANES谱图
     
     

    【参考文献】

    [1] G. T. Seidler, D. R. Mortensen, et.al., A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements. Rev. Sci. Instrum. 2014, 85, 113906.
    [2] S. K. Padamati, W. R. Browne, et.al., Transient Formation and Reactivity of a High-Valent Nickel(IV) Oxido Complex, J. Am. Chem. Soc. 2017, 139, 8718-8724.
    [3] M. E. Mundy, B. M. Cossairt, et.al., Aminophosphines as Versatile Precursors for the Synthesis of Metal Phosphide Nanocrystals, Chem. Mater. 2018, 30, 5373-5379.
    [4] E. P. Jahrman, J. R. Sieber, et.al., Determination of Hexavalent Chromium Fractions in Plastics Using Laboratory-Based, High-Resolution X-ray Emission Spectroscopy, Anal. Chem., 2018, 90, 6587-6593.
    [5] W. M. Holden, S. Cheah, et.al., Sulfur Speciation in Biochars by Very High Resolution Benchtop Kα X-ray Emission Spectroscopy, J. Phys. Chem. A, 2018, 122, 5153-5161.
    [6] J. L. Stein, B. M. Cossairt, et.al., Probing Surface Defects of InP Quantum Dots Using Phosphorus Kα and Kβ X-ray Emission Spectroscopy, Chem. Mater. 2018, 30, 6377-6388.
    [7] R. Bès, K. Kvashnina, et al., Laboratory-scale X-ray absorption spectroscopy approach for actinide research: Experiment at the uranium L3-edge, J. Nucl. Mater. 2018, 507, 50-53.
    [8] E. P. Jahrman, G. T. Seidler, An Improved Laboratory-Based XAFS and XES Spectrometer for Analytical Applications in Materials Chemistry Research. Rev. Sci. Instrum., 2019, 90, 024106. 



     【产品详情】

    台式X射线吸收精细结构谱仪(XAFS/XES):http://www.qd-china.com/products2.aspx?id=481


参与评论

全部评论(0条)

热门问答

学术前沿|Z新实验室台式XAFS/XES谱仪,助力材料化学领域结构分析与应用

引言

    自W. C. Röntgen于1895年发现X射线以来,X射线应用技术得到了长足发展,包括X射线衍射、吸收、散射、荧光及光电子谱学等(图1a)。其中Maurice de Broglie在1913年首 次测到了X射线吸收边, 1920年Friche和Hertz首 次发现了X射线精细结构(X-ray absorption fine structure),但直到上世纪七十年代Sayers、Stern和Lytle开创性地通过傅里叶变换从X射线吸收谱中得到了详细结构参数,短程有序理论(SRO)才被人们所广泛接受。随着同步辐射光源(Synchrotron X-ray light sources)的大量应用,XAFS技术(图1b,包含XANES(X-ray absorption near-edge structure)和EXFAS (Extended X-ray absorption fine structure ))才逐渐发展成为一种非常实用的结构分析方法。由于XAFS对ZX吸收原子的局域结构(尤其是在0.1 nm范围内)及其化学环境十分敏感,因而可以在原子尺度上给出某一特征原子周围几个临近配位壳层的结构信息,包括配位原子种类及其与ZX原子的距离,配位数,无序度等,被广泛应用于物理,化学,材料,生物和环境科学等领域,解决了一系列重大科学问题。
 
图1. X射线应用技术概括及XAFS技术分类 
 
    然而,由于XAFS技术通常依赖于同步辐射X射线光源, 而其不像其他设施容易被大众所获得,极大地限制了XAFS技术在各领域的大范围应用。近年来实验室用台式XAFS谱仪的出现,使得在实验室日常使用XAFS技术进行材料的精细结构分析成为了可能。2013年首台实验室用台式XAFS谱仪诞生于美国华盛顿大学物理系Gerald T. Seidler教授课题组,并于2015年成立了easyXAFS公司,致力于实验室用台式XAFS谱仪在的推广和应用。台式XAFS谱仪采用了独有的X射线单色器设计,无需使用同步辐射光源,在常规的实验室环境中即可实现X射线吸收精细结构的测量和分析,以极高的灵敏度和光源质量,得到了可以媲美同步辐射水平的X射线吸收谱图,实现对元素的定性和定量分析,价态分析,配位结构解析等

工作原理

    美国easyXAFS公司的台式XAFS/XES谱仪其工作原理如图2a所示,光路图为:X射线源---球面弯曲晶体(SBCA)---X射线探测器(SDD)。其特有的罗兰环单色器工作原理如图2b所示,X射线源和SDD探测器均设有滑动杆,在X射线照射过程中,两者可以随之进行滑动调节,其中满足布拉格方程的单色X射线被SBCA重新汇聚于罗兰环的另一点,并被X射线探测器检测和收集, 从而获得不同能量的单色X射线。


 
图2. (a)XAFS/XES谱仪光路图;(b)罗兰环单色器工作原理图

产品特点

美国easyXAFS公司的台式XAFS/XES谱仪具有以下特点:

1. 台式设计,可以在实验室内随时满足日常使用(如图3)

 
图3. 台式实验室用XAFS/XES谱仪实物图

2. LabVIEW软件脚本控制,附带7位自动样品轮, 可以同时进行多个样品或样品参数条件下的测试 (如图4)

 
图4. 台式实验室用XAFS/XES谱仪内部结构图及7位自动样品轮图
 
3. 可集成辅助设备,控制样品条件,适用于对空气敏感的样品的检测或一些原位测试,如原位的锂电池或电催化实验测试,监测电极/催化材料的结构变化(如图5)
 
图5. 手套箱内集成的台式实验室用XAFS/XES谱仪实物图
 

4. 台式XAFS/XES谱仪具有XAFS和XES两种工作模式,可快速切换,满足不同科研试验需求(如图6所示)

 
图6. 台式XAFS/XES谱仪(a)XAFS及(b)XES工作实物及光路示意图(插图)
 

5. 台式XAFS/XES谱仪测得的谱图效果可以媲美同步辐射数据,如图7所示,其测得的Ni元素的EXAFS, Ce和U元素的L3-edge的XANES谱图数据与同步辐射光源谱图效果完全一致

 
图7. 台式XAFS/XES谱仪与同步辐射光源测得的(a, b)Ni EXAFS, (c)Ce和U L3-edge XANES谱图数据对比
6. 多种型号和配置可选,满足不同科研要求 
7. 操作便捷,维护成本极低,安全可靠

应用解析

    美国easyXAFS公司台式XAFS/XES谱仪已在拥有众多的用户,应用领域包括材料、化学、催化、能源和环境等等,相关成果发表在J. Am. Chem. Soc., J. Phys. Chem. C, Chem. Mater., Anal. Chem.等重要期刊。相关案例如下:


1. 化合物价态分析

    美国华盛顿大学化学系的Brandi M. Cossairt课题组使用easyXAFS公司实验室台式XAFS谱仪对溶液相合成的金属磷化物产物的Co元素进行K边XANES谱图分析(图8),十分便捷地获得了合成产物的价态信息,通过与标准样品谱图对比,十分准确快捷的对合成产物的物相组成(CoP或Co2P)给出了鉴别,与其他方法获得的信息高度一致,如XRD,NMR等。


 
图8. 金属磷化物的(a)合成机理图,(b)透射电镜TEM照片,(c)不同Co化合物的X射线衍射谱以及(d)台式XAFS/XES谱仪测得的不同化合物的Co K-edge XANES谱图
 

    除此之外,X射线发射谱(XES,X-ray emission spectroscopy), 又可称为波长色散X射线荧光谱(WDXRF,Wavelength dispersive x-ray fluorescence spectroscopy),通过对特定元素内层电子受激发后外层电子弛豫过程中发射的X射线荧光能量和强度进行分析,也可以精确的给出分析原子的氧化态,自旋态,共价,质子化状态,配体环境等信息。由于不依赖于同步辐射,且得益于特有的单色器设计,可以在实验室内实现高分辨宽角高通量的XES元素分析(包括P, S, V,Zn, Cr, Ni, As, U, etc. )。如图9所示,通过对不同化合物中P元素的特征Kα和Kβ轨道能级的XES谱图进行定性和定量,可以方便的得到InP量子点中精确的P元素价态及表面缺陷信息,相比于NMR等技术更加简单方便。其他的实例(如图10)还包括使用特征S元素的 Kα XES谱图对不同生物炭中的低含量S元素进行不同价态(氧化态)的定性定量分析, V, As, U和Zn的特征XES谱图,和通过Cr元素特征Kα XES谱图对塑料中重金属铬元素的价态进行分析等等。


图9. 通过台式XAFS/XES谱仪测得的P元素特征Kα和Kβ轨道能级的XES谱图对InP量子点表面缺陷进行定性和定量分析
 
图10. 通过台式XAFS/XES谱仪测得的Cr, V, As, U, Zn和S的特征Kα或Kβ轨道能级的XES谱图对化学物种元素的价态进行定性和定量分析

2. 电池材料价态分析

    XAFS技术在电池材料,尤其是正极材料,在充放电过程中化学态的分析,有着重要的意义,可以帮助科学家们了解电极材料的制备过程,电池组装,运行条件等因素对其化学态的影响,有利于人们更深入地了解电池的工作原理,优化电池结构的设计。如图11所示,采用easyXAFS公司生产的台式XAFS/XES谱仪,科学家们能够方便的通过XANES技术对一系列电极材料的化学态进行分析,包括充电和放电态,如LiCoO2, VOPO4, NMC(镍锰钴三元电极材料)等等。
图11. 通过台式XAFS/XES谱仪的不同材料中特定元素的XANES或Kα轨道能级的XES谱图来对化学物种元素(Co, V, Ni, etc.)的价态进行定性和定量分析

3. 原位电池/催化测试

    近年来原位测试技术越来越受到大家的关注,对不同物理化学过程中材料的物理化学性能进行原位的表征,更加深入的获得材料的实时结构信息。美国easyXAFS公司的台式XAFS/XES谱仪为原位进行样品目标原子的近邻化学结构信息表征提供了可能。如图12所示,通过对锂电池正极材料LiNixMnyCo1-x-yO2在不同充放电状态下的XANES谱图进行分析,可以很方便的得到在不同充放电状态下不同金属元素Ni, Mn和Co的价态信息,为进一步电池材料和结构的优化提供重要的实验依据。
 
图12. LiNixMnyCo1-x-yO2的化学结构示意图以及通过台式XAFS/XES谱仪测得的金属Co, Mn和Ni在不同充放电状态下的XANES谱图
 
 

【参考文献】

[1] G. T. Seidler, D. R. Mortensen, et.al., A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements. Rev. Sci. Instrum. 2014, 85, 113906.
[2] S. K. Padamati, W. R. Browne, et.al., Transient Formation and Reactivity of a High-Valent Nickel(IV) Oxido Complex, J. Am. Chem. Soc. 2017, 139, 8718-8724.
[3] M. E. Mundy, B. M. Cossairt, et.al., Aminophosphines as Versatile Precursors for the Synthesis of Metal Phosphide Nanocrystals, Chem. Mater. 2018, 30, 5373-5379.
[4] E. P. Jahrman, J. R. Sieber, et.al., Determination of Hexavalent Chromium Fractions in Plastics Using Laboratory-Based, High-Resolution X-ray Emission Spectroscopy, Anal. Chem., 2018, 90, 6587-6593.
[5] W. M. Holden, S. Cheah, et.al., Sulfur Speciation in Biochars by Very High Resolution Benchtop Kα X-ray Emission Spectroscopy, J. Phys. Chem. A, 2018, 122, 5153-5161.
[6] J. L. Stein, B. M. Cossairt, et.al., Probing Surface Defects of InP Quantum Dots Using Phosphorus Kα and Kβ X-ray Emission Spectroscopy, Chem. Mater. 2018, 30, 6377-6388.
[7] R. Bès, K. Kvashnina, et al., Laboratory-scale X-ray absorption spectroscopy approach for actinide research: Experiment at the uranium L3-edge, J. Nucl. Mater. 2018, 507, 50-53.
[8] E. P. Jahrman, G. T. Seidler, An Improved Laboratory-Based XAFS and XES Spectrometer for Analytical Applications in Materials Chemistry Research. Rev. Sci. Instrum., 2019, 90, 024106. 



 【产品详情】

台式X射线吸收精细结构谱仪(XAFS/XES):http://www.qd-china.com/products2.aspx?id=481


2019-10-15 10:48:18 480 0
为破环境“毒铬”,台式XAFS/XES谱仪“乘风破浪”而来

“铬”污染对环境的危害

    铬是一种地球上含量十分丰富的元素,在自然界中主要以铬铁矿的形式存在。常见化合价有+2、+3、+6三种,其中,三价铬和六价铬对人体健康有害,六砎铬的毒性比三价铬约高100倍,是强致突变物质,可诱发肺癌和鼻咽癌,三价铬有致畸作用。近年来,生产金属铬和铬盐过程中产生的固体废渣——铬渣,以及由于风化作用进入土壤中的铬,容易氧化成可溶性的复合阴离子,经过淋洗转移到地面水或地下水中,已成为铬污染的重要环境污染问题。因此,测试表征方法的可靠性至关重要,可方便人们了解铬在环境和产品中的形态。许多国际组织制定了针对Cr(VI)表征的标准方案,以满足RoHS(《关于限制在电子电器设备中使用某些有害成分的指令》)对诸多消费品材料中Cr(VI)含量的限制 (RoHS规定ZD铬(VI)的质量分数为0.1%)。

    目前可用于准确表征固体样品中Cr(VI)含量的分析手段很少,且存在系统性和实用性的缺陷。传统的比色分析法,在使用湿法化学提取方法(如液相萃取方法EPA 3060a)对塑料、矿石和尾矿以及油漆污泥进行处理时,Cr(VI) 往往会出现价态转变和萃取不完全的问题,大大低估了样品中Cr(VI)的质量分数。因此发展合适的测试方法来分析环境和制成品中Cr的形态和含量显得至关重要。

“乘风破浪”的台式XAFS/XES谱仪

    现今常用的X射线光谱技术,例如X射线光电子能谱(XPS)仅能对样品表面进行分析,无法获得体相结构信息,且需要超高真空度,通常无法对塑料,环氧树脂和树脂进行测试;X射线荧光光谱(XRF)可用作元素分析技术,但其能量分辨率较低,无法实现对Cr元素不同化合物的甄别(图1)。近年来,基于同步加速器的X射线吸收精细结构谱(XAFS)和X射线发射光谱(XES)技术,得到了长足的发展和应用。其优点是样品需求量非常小,可以研究自然界不同样品中目标元素的电子结构,被广泛用于玻璃,土壤,塑料,煤,铬鞣革和超镁铁矿岩石中的Cr元素的价态和含量的分析。但XAFS和XES技术受限于同步辐射加速器光源,导致该技术无法在环境和工业应用领域进行有毒元素的合规性验证。

图1. 传统XRF技术因其能量分辨率较低,导致无法对不同化合物Cr元素进行甄别

    近期美国华盛顿大学Gerald Seidler教授等人成功设计并完成实验室级台式XAFS/XES谱仪easyXAFS的开发工作(图2a),其以罗兰环为基本几何构型,使用球形弯曲晶体分析仪(SBCA),实现了大的计数率/光通量和宽的布拉格角范围的技术提升,使XAFS (图2b)和XES分析(图2c)首次在实验室内成为了可能,是分析环境和制成品中Cr形态和含量的利器。

图2. (a) easyXAFS公司台式XAFS谱仪及创始人Devon Mortensen; (b)XAFS工作原理示意图;(c)XES工作原理示意图

“铬”个击破:XAFS/XES在环境元素分析中的应用

    图3显示了XAFS光谱Cr近边区结果(XANES)。研究人员利用台式XAFS技术轻松对铬元素进行分析检测,不仅完成了标准品化合物K2CrO4的测试及拟合分析,同时也实现了对实际生产样品的表征。

图3. XAFS近边区光谱(a)六价参考化合物,铬酸钾;(b)CRM 8113a是基于RoHS描述的用于重金属分析的认证参考材料

    台式XAFS谱仪也同时配置了XES模组,通过激发特定元素内层电子后使外层电子产生弛豫并发射X射线荧光,对其能量和强度进行分析可以精确的给出目标元素的氧化态、自旋态、共价、质子化状态、配体环境等信息。由于不依赖于同步辐射,且得益于特有的单色器设计,可以在实验室内实现高分辨宽角高通量的XES元素分析(包括P, S, V,Zn, Cr, Ni, As, U, etc.)。在图4中,在未知Cr含量的塑料样品中,当拟合Cr 元素XES Kα光谱时,可以充分观察到Cr的各种氧化态之间的精细光谱变化,且测试结果与同步辐射XAFS一致。对比Cr(VI)和Cr(III),可以在高于20 meV的能量分辨率下轻松辨别光谱特征的差异。Cr(III)在价态上具有更高电子密度,其光谱将会向更高的能量方向移动,且相对于Cr(VI)峰变宽,可以明显区分出Cr(VI)和Cr(III)。

图4. 背景扣除和积分归一化后的Cr(VI)和Cr(III)铬化合物的Cr Kα XES 光谱

    此外,从标准塑料样品中收集的XES光谱(图5),利用线性superposition analysis技术,经拟合与参考化合物光谱的线性叠加,推断出的Cr(III)/Cr(VI)比例再结合传统的XRF技术,就可以实现Cr(VI) ppm级别的定量分析。

图5. 不同样品中Cr Kα XES光谱的垂直偏移(所有光谱均经过背景校正和归一化)

未来展望

    XAFS/XES技术不仅可以应用于多种聚合物样品中Cr元素的测定,同时也可应用于P、S、V、Zn、Cr、Fe、Co、Ni、Au、As、U等元素分析。此方法是无损测试,只需极少量的样品,就可由实验室级测试仪easyXAFS完成。基于实验室XAFS/XES的Cr测量可能成为未来环境领域及工业届的标准测试方法。

 

 

参考文献:

[1] Analytical Chem. 90, 6587 (2018)

[2] J. Phys. Chem. A 122 5153 (2018)

[3] Rev. Sci. Instrum. 88 073904 (2017) 


2020-07-24 10:17:49 578 0
分析式铁谱仪的结构及工作原理
 
2011-07-21 05:30:42 1132 2
纳米材料Z新应用举例?
医学、科技等方面都可以算,有哪些啊,全一点
2013-06-07 02:55:53 428 1
测汞仪标准有哪些?常见应用与哪些领域?

测汞仪标准:确保测量与环境安全

随着工业化进程的推进,汞污染问题日益严峻。汞是一种高毒性的重金属,对生态环境和人类健康有着极大的威胁。为了有效监测汞的含量,许多行业和研究机构纷纷采用测汞仪。为了确保测量结果的准确性与可靠性,测汞仪的标准化成为了行业中的重要议题。本文将从测汞仪的标准化要求、技术规范和应用领域等方面进行详细介绍,帮助相关领域的专业人士了解如何选择和使用符合标准的测汞仪,确保测量结果的准确性和环境安全。

测汞仪的基本功能与重要性

测汞仪是用于测量空气、水体、土壤及其他介质中汞含量的仪器。汞作为一种挥发性有毒物质,其测量精度直接关系到环境保护和公共健康。测汞仪在环境监测、工业排放监控、食品安全检测等方面发挥着重要作用。为了避免汞的污染,必须依赖精确的仪器来检测其浓度,尤其是在汞排放和汞污染严重的地区。

测汞仪的标准化需求

在汞的监测过程中,测汞仪的性能标准直接影响到测量数据的准确性和可靠性。因此,制定和执行严格的测汞仪标准是保障检测结果可信度的前提。目前,国际和国内已有多项标准规定了测汞仪的技术要求和测试方法。例如,ISO 11024标准便涉及了汞的检测方法及仪器性能要求。该标准规定了仪器的灵敏度、选择性、测量范围、精度以及稳定性等指标。

国内方面,国家环境保护标准《环境空气 汞的测定 原子荧光法》也对测汞仪的技术规范提出了明确的要求。这些标准不仅规范了测汞仪的技术性能,还要求仪器具备防止污染物干扰的能力,确保在不同环境条件下的高效稳定运行。

测汞仪的技术标准要点

  1. 灵敏度与检测限:测汞仪必须具备足够的灵敏度,以检测低浓度的汞污染。灵敏度和检测限通常以ppb(十亿分之一)为单位进行表示,要求仪器能够在极低浓度下稳定工作,确保检测到环境中的微量汞。

  2. 度与重复性:测汞仪应具备高度的度和良好的重复性。测量数据的偏差应尽可能小,保证在多次检测中结果的一致性,避免人为误差对数据的影响。

  3. 稳定性与抗干扰性:汞的测量过程中可能会受到其他化学物质的干扰,尤其是工业废气中含有的其他金属元素。因此,测汞仪必须具有良好的抗干扰能力,能够准确区分汞与其他物质的影响,提供准确的测量结果。

  4. 数据处理与输出:测汞仪应具备先进的数据处理功能,能够根据检测数据自动计算和输出结果,方便用户快速获取可靠的测量数据。

  5. 仪器校准与维护:为了确保测汞仪的长期稳定性和准确性,仪器需要定期进行校准和维护。标准化流程中还应明确仪器的校准周期、校准方法及所需的标准溶液等。

测汞仪的应用与前景

测汞仪在环境保护、公共卫生、工业监测等领域的应用日益广泛。在环境监测方面,它能有效监测大气、水源和土壤中的汞污染,帮助政府和相关部门制定有效的汞污染防控措施。在工业领域,特别是在化工、冶金、燃煤电厂等行业,测汞仪能够实时监测汞的排放情况,确保工业生产过程符合环保标准。

随着科技的进步,测汞仪的性能和精度也在不断提升。未来,测汞仪将朝着更加智能化、便捷化的方向发展,结合大数据分析和远程监控技术,使得汞的监测更加高效、,为汞污染的提供强有力的技术支持。

结语

测汞仪的标准化不仅有助于提高汞污染监测的准确性,更为环境保护、公共健康和可持续发展提供了有力保障。随着对环境污染日益重视,测汞仪的技术要求和标准将持续提升,以适应日益严峻的汞污染防控需求。对于相关行业的从业人员而言,选择符合标准的测汞仪器,并严格执行相关检测规范,将是确保监测数据准确性与可靠性的关键。

2025-01-02 12:15:12 134 0
铁谱仪怎么分析

本篇文章聚焦铁谱仪在材料分析中的应用,揭示从样品制备到数据解读的完整流程。掌握原理、标准化设置与质量控制,能够实现对铁及合金元素的定量分析,并评估热处理和磨损等工艺变化。


一、工作原理与适用场景 铁谱仪用于铁及合金成分分析,常见路径包括X射线荧光(XRF)的非破坏检测与ICP-OES/ICP-MS的高精度定量。也可结合磁性分离或粒度分析,帮助判断磨损粒子特征。生产现场的快速筛选、质量控制与研发验证都属于其典型应用。


二、分析流程要点 1) 样品制备:XRF多用抛光片或烧结珠,ICP需消解或溶解。2) 仪器设置:确定元素区间、背景扣除与干扰矫正策略。3) 数据采集:设定时间与重复次数,确保信噪比与基线稳定。4) 标定与计算:使用标准物质建立曲线,进行线性拟合并矫正背景与干扰。5) 数据输出与报告:将结果按行业标准格式输出,便于追踪和审核。


三、数据解读要点 结果以含量表示,结合质量控制限值评估合格性。对比不同批次可判断热处理效果、表面处理影响及工艺稳定性。报告应清楚列出方法、样品信息、检测限与不确定度,并就低含量元素的检测可靠性给出评估。


四、常见误区与注意 避免盲目追求极低检测限而忽略样品均匀性;关注基线漂移、光路污染及干扰矫正的有效性;使用标准物质进行复核并记录不确定度。日常操作中应确保样品制备的一致性与仪器长期稳定。


五、设备选型与维护 选型在元素范围、灵敏度与通量。现场快速筛查更看重稳定性,研发则注重多元素覆盖与灵敏度。日常维护包括定期校准、光学部件清洁、气源与试剂稳定性检查,以及软件与数据库的更新,以维持结果的可比性。


六、应用案例简述 在钢材质量控制中,先用XRF快速筛查Cr、Ni、Mo等主元,再用ICP-OES对低含量元素进行精确定量,完成批次级合格评估;在设备维护领域,通过对润滑油中铁粒子的成分与粒径分布分析,辅助评估磨损等级与故障风险。


通过规范的分析流程,铁谱仪可为材料成分评估、质量控制与工艺优化提供可靠依据。


2025-10-11 15:15:19 56 0
13日 谱标新到货 岛津气质联用仪 轻松分析pbb、pbde

4月13日下午,谱标实验室新到货一台岛津气质联用仪GCMS QP2010,成色有95成新,岛津气相色谱质谱联用仪gcms:轻松分析pbb、pbde、多氯联苯(pcb),多重氯化萘(pcn、pct)、有机锡类、偶氮类化合物azo-compounds、邻苯二甲酸酯dops等有毒有害物质。

岛津气质联用仪GCMS QP2010建议搭配和HS40顶空进样器联用,仪器实图和配置参考如下:

                               

                               

岛津气质联用仪GCMS QP2010配置参考:

1,主机:GC气相色谱 GC-2010

2,主机: MS质谱仪 QP2010

3,自动进样器 AOC-20i

4,100位进样盘 AOC-20s

5,原装工作站

6,机械真空泵

 

                               

HS40顶空进样器可与岛津气相色谱仪联用,采用压力平衡进样技术既可进行常规静态顶空进样以保证得到窄的色谱峰形。操作方式:常规,自动连续重叠模式和多次顶空提取,效率高:可连续加热12个样品瓶。用户只要将顶空和GC的操作条件和参数设置完成,启动分析系统即可自动完成全部样品的分析并打印出分析报告。

HS40 顶空进样器的应用:

1. 水中VOC(可挥发性有机化合物)的分析,如:饮用水中卤代烃的分析。
2. 土壤和固体废弃物中VOC的分析,如:固体废弃物中的苯系物的分析。
3. 药品及生化样品的分析,如:片剂中残留溶剂的分析,饮酒后血液中醇类的分析。
4. 化妆品及表面活性剂的分析,如:洗发香波中有害物质的分析。
5. 酒类及食品及油类的分析,如:啤酒中香味的分析,食用油中有害物质的分析。
6. 化工产品的分析,如:高聚物中残留溶剂或残留单体的分析。
7. 包装材料及容器材料的分析,如:塑料薄膜中残留溶剂、单体、添加剂、印刷油墨溶剂等的分析。
8. 烟草工业中烟草中挥发性组分的分析,如:烟草加香后其表香香精的分析。


2021-04-23 14:58:41 351 0
实验室洗瓶机的应用——多领域的瓶子清洗

农产品检测是确保食品安全的重要环节,而实验室洗瓶机的应用则是保障检测结果的真实性,让人们吃得更加放心。实验室洗瓶机在农产品检测中扮演着至关重要的角色,它能够高效、快速地清洗样品瓶子,从而减少了人工清洗的不确定性,保证了检测结果的准确性。

 

实验室洗瓶机的应用——保障检测结果真实性

 

在农产品检测中,取样瓶是常见的工具,而实验室洗瓶机则是对这些瓶子进行清洗的关键设备。洗瓶机可以快速、高效地清洗瓶子,减少了人工清洗的不确定性,从而保障了检测结果的真实性。这对于确保食品安全至关重要。

 

 实验室洗瓶机的优势——提高清洗效率、保证清洗标准性

 

与传统的手动清洗方式相比,实验室洗瓶机不仅能够提高清洗效率,还能够保证清洗的标准性。同时,实验室洗瓶机可以自动化地完成清洗、消毒等工作,减少了操作人员接触样品的机会,从而降低了污染的风险。此外,实验室洗瓶机还可以对清洗液进行循环利用,降低了清洗成本,节约了资源。

 

 实验室洗瓶机的应用——多领域的瓶子清洗

 

在实验室中,实验室洗瓶机的应用更为广泛。除了用于农产品检测之外,洗瓶机还可以用于医药、化工等领域的瓶子清洗。在这些领域中,瓶子的清洗对于实验结果的准确性至关重要,因此洗瓶机的应用也变得尤为重要。洗瓶机的应用不仅仅是保证食品安全,还涉及到医药、化工等领域,对于人们的生命健康具有重要意义。

 

实验室洗瓶机的应用让样品的取样、检测、分析等环节更加安全、准确,为人们的饮食安全保驾护航。随着科技不断发展,实验室洗瓶机的技术也在不断升级,未来将会有更多的实验室使用洗瓶机,让实验工作更加高效、安全、可靠。



转载自:http://www.hzxpz.com/


2023-07-21 17:35:08 207 0
顺磁共振波谱仪应用主要在哪些领域?

顺磁共振波谱仪应用

顺磁共振波谱仪(Electron Paramagnetic Resonance Spectrometer,简称EPR)作为一项重要的分析工具,广泛应用于化学、物理、生物医学等多个领域。通过精确测量样品中带有未配对电子的物质(即顺磁性物质)在外加磁场下的响应,顺磁共振波谱仪能够为研究人员提供丰富的分子信息。本文将探讨顺磁共振波谱仪在不同领域中的应用,分析其在科学研究和工业生产中的重要作用,以及它如何推动相关学科的创新与发展。

顺磁共振波谱仪的工作原理

顺磁共振波谱仪的工作原理基于电子自旋与外部磁场之间的相互作用。当含有未配对电子的物质置于外部磁场中时,电子自旋会发生能级分裂,导致不同能级之间的跃迁。通过施加特定频率的射频辐射,仪器可诱发电子从低能级跃迁至高能级,随后通过探测电子从高能级跃迁回低能级时释放的能量来得到相关的光谱信息。该技术能够精确地揭示分子中未配对电子的分布情况及其与周围环境的相互作用。

顺磁共振波谱仪在化学领域的应用

在化学领域,顺磁共振波谱仪被广泛应用于自由基、过氧化物、金属离子等顺磁性物质的研究。通过对这些物质的电子结构和反应机制的分析,研究人员能够深入了解化学反应中的关键步骤及其机制。例如,顺磁共振波谱仪能够精确测量反应过程中自由基的形成与消失,揭示有机合成中自由基反应的动力学过程。

顺磁共振波谱仪在生物医学中的应用

顺磁共振波谱仪在生物医学领域的应用越来越广泛。由于许多生物分子,如金属酶和某些药物分子,具有顺磁性,因此EPR技术成为了研究生物分子结构和功能的重要工具。通过分析这些生物分子的电子自旋信息,研究人员能够深入了解疾病机制、药物作用机制及其与体内环境的相互作用。例如,EPR在研究氧自由基在细胞内的产生与作用、探讨抗氧化剂在人体中的作用等方面发挥了重要作用。

顺磁共振波谱仪在材料科学中的应用

在材料科学领域,顺磁共振波谱仪也具有重要的应用价值。随着新型材料不断涌现,如何精确分析这些材料的电子结构、探讨其顺磁性特征成为了研究的。例如,EPR技术可以用于研究半导体材料中的缺陷状态、金属氧化物中的金属离子中心,以及各种纳米材料的磁性特征等。顺磁共振波谱仪还被广泛应用于催化剂研究,帮助研究人员分析催化反应过程中活性位点的变化,进一步提高催化性能。

顺磁共振波谱仪在环境科学中的应用

环境污染问题日益严重,顺磁共振波谱仪在环境科学中的应用同样重要。它能够帮助检测水体、空气及土壤中的有害物质,尤其是对于含有重金属离子的污染物,如铅、汞、铬等的检测具有显著优势。通过对这些污染物的顺磁性分析,EPR技术能够提供污染源的实时监测和污染物迁移的深层次信息,支持环境保护政策的制定与实施。

总结

顺磁共振波谱仪作为一种强有力的分析工具,在化学、生命科学、材料科学和环境科学等多个领域发挥着重要作用。随着技术的不断进步和应用领域的不断拓展,EPR技术将为相关学科的深入研究提供更加的数据支持和理论依据。通过进一步优化和改进该技术,顺磁共振波谱仪必将在未来的科研与工业应用中展现更大的潜力。

2025-01-09 13:00:13 192 0
分析铁谱仪实用价值说明

铁谱仪主要用来直接测定润滑油试样中磨粒的含量和尺寸分布,能够方便、迅速而准确地测定润滑油样内大小磨粒的相对数量,可以很直观地反映出摩擦副的磨损程度和磨损烈度,因而能对设备状态作出初步的诊断,是目前设备监测和故障诊断的较好手段。常用的仪器有:分析式铁谱仪、直读式铁谱仪、铁量仪。颗粒计数技术润滑油经过使用后,不可避免地会受到污染。检测这种污染程度有多种方法,有定性、半定量、定时等各种方法,应根据具体情况加以选择。对于污染较重,颜色较深的润滑液,可用斑点试验法,也可用带有特制网格的滤纸按一定规则进行计划数的半定量法,还可使用一些快速油质分析仪。这些方法的特点是简单、快速、与其它检测项目的匹配性较好,有实用价值。

  铁谱仪 是一项对从各种流体中分离出的磨损颗粒进行微观检验和分析的技术。作为一项预测维修技术起源于二十世纪七十年代中期,它最初用于用磁力沉淀润滑油中的铁磁磨损颗粒,这项技术被成功应用于监测飞机发动机、齿轮箱和传动系统的状态。 铁谱仪 成功加速了其他应用的开发,包括方法的修改可用于沉淀润滑剂中的非磁性颗粒,在一个玻璃衬底上定量分析磨损颗粒(铁谱仪),以及精致油脂溶剂用于重型工业。

  油液分析,特别是铁谱仪分析是识别和确定维修需求的有效方法。目前技术的发展方向包括图像分析,在线传感器,便携式筛选工具,自动化油分析筛选工具,评价结果的电子传送,和人工智能。

  由于现代设备系统的高速、集成化和自动化,任何停机都会导致生产停止和高代价,因此,非中断性诊断技术诸如油液光谱分析、振动分析、电动机电流分析,和 铁谱仪分析(磨粒分析)越来越多地应用于动力,过程,半导体和制造业。机器的设计者和制造者越来越多地使用磨损分析作为一个现实的标准来改善诸如压缩机、齿轮、轴承和透平部件这些产品。


2020-10-28 11:38:48 297 0
铁谱仪分析范围是什么

铁谱仪分析范围是什么?

铁谱仪作为一种精密的分析设备,广泛应用于材料科学和工程领域,尤其是在钢铁行业中。其主要功能是通过分析金属中的微观组织结构,帮助工程师了解材料的成分、质量以及性能。本文将深入探讨铁谱仪的分析范围,包括其在不同领域的应用、所能检测的金属种类以及该设备在提高产品质量方面的优势。通过了解铁谱仪的分析能力,您将能更好地理解其在材料分析和质量控制中的重要作用。

铁谱仪的工作原理

铁谱仪的工作原理是基于金属材料在不同条件下的物理变化,尤其是铁磁性材料在磁场中的行为。该设备通过高精度的传感器扫描样品表面,获取相关的磁性信息,并通过计算机处理与分析,得到材料的微观结构特征。通过这些数据,能够有效评估材料的成分分布、晶粒大小、孔隙率等重要性能指标。

铁谱仪的应用范围

  1. 钢铁行业:铁谱仪在钢铁行业的应用为广泛,尤其是在钢材的质量控制过程中。通过对钢铁样品进行分析,铁谱仪能够识别其中的杂质和析出物,提供钢材成分和性能的准确数据。这些数据不仅帮助企业优化生产工艺,还能提高终产品的质量稳定性。

  2. 铸造与金属加工:在铸造和金属加工行业,铁谱仪用于检测铸件的质量,尤其是在铸造过程中识别潜在的缺陷。例如,气孔、裂纹或非金属夹杂物等,铁谱仪能迅速检测到并提供相关数据,有效提高生产过程中的质量控制能力。

  3. 航空航天及汽车行业:在航空航天和汽车制造业,铁谱仪用于精密零件的质量检测,尤其是对高强度钢材和合金材料的监测。这些行业对材料的性能要求极高,铁谱仪能够帮助识别材料的微观结构变化,确保产品的可靠性和安全性。

  4. 腐蚀分析:铁谱仪也广泛应用于材料腐蚀分析。它能够准确评估金属表面因长时间暴露在特定环境中所发生的物理变化,提供有助于延长材料使用寿命的改善建议。

铁谱仪分析的优势

铁谱仪在分析过程中提供的数据精确度高,能够揭示材料的微观结构变化,这对于提高生产工艺和优化材料性能具有重要意义。与传统的分析方法相比,铁谱仪能够更加迅速、准确地获取关键信息,减少人工干预,并且具备较高的自动化程度,极大地提高了分析效率。

铁谱仪还能够为金属材料的质量控制提供数据支持,从而帮助企业识别潜在的质量问题,及时调整生产工艺,有效降低废品率。

专业总结

铁谱仪是一项先进的材料分析技术,其分析范围涵盖了从钢铁行业到航空航天等多个领域。其通过精确的磁性分析,能够揭示金属材料的微观结构特征,为质量控制和工艺优化提供了坚实的数据支持。随着技术的不断进步,铁谱仪的应用范围和分析精度将进一步提升,成为各大工业领域中不可或缺的重要工具。

2025-01-20 19:45:15 132 0

1月突出贡献榜

推荐主页

最新话题