仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

成果速递|超高分辨散射式近场光学显微镜在超快研究领域ZX应用

Quantum Design中国子公司 2020-09-03 12:37:49 473  浏览
  •     近年来,范德瓦尔斯(vdW)材料中的表面极化激元(SP)研究,例如等离极化激元、声子极化激元、激子极化激元以及其他形式极化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在独特的激子极化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。

        前期的众多研究工作表明,扫描近场光学显微镜(SNOM)已经被广泛用于稳态波导的可视化表征,非常适合评估范德瓦尔斯半导体的各向异性和介电张量。 如上所述,范德瓦尔斯材料中具有异常强烈的激子共振,这些激子共振能产生吸收和折射光谱特征,这些特征同样被编码在波导模式的复波矢量qr中,鉴于范德瓦尔斯半导体在近红外和可见光范围内对ab-平面的光学极化率有重大影响,因此引起了人们的研究兴趣。

        2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:”Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。                                                                原文导读:

    ①    在纳米空间分辨超快光谱和成像(tr-SNOM)实验中(图1,a),研究者首先将Probe探测光(蓝色)照到原子力显微镜(AFM)探针JD的顶点上,从探针JD顶点(光束A)散射回的光被离轴抛物面镜(OAPM)收集并发送到检测器。同时,WSe2材料的中的波导被激发并传播到样品边缘后,进而波导被散射到自由空间(光束B)。第二个Pump泵通道(红色)可均匀地扰动样本并改变波导的传播。 通过在WSe2/SiO2界面处的近场tr-SNOM的振幅图像(图1b)可明显观察到约120 nm厚WSe2材料边缘(白色虚线)处形成的特征周期条纹—光波导电场分布。研究者进一步通过定量分析数据,分别获取了稳态和光激发态下,WSe2中波导的光波导的相速度q1,r和q1,p。

    图1:纳米空间分辨超快光谱和成像系统对WSe2材料中光波导的纳米成像结果。

    a:实验示意图(蓝色为Probe光,红色为Pump光);b:近场纳米光学成像 c: 在稳态下,WSe2边缘的近场光学振幅图像;d: 光激发态下,延迟时间 Δt=1ps的WSe2边缘的近场光学振幅图像;e: 分别对c、d进行截面分析,获取定量数据。Probe探测能量,E=1.45 eV

    ②    研究者通过变化Probe探测能量范围(1.46–1.70 eV)及其理论计算成功获取了WSe2晶体稳态下的色散关系和理论数据显示A-exciton所对应的能量。

    图2:WSe2晶体稳态动力学的时空纳米成像研究。

    a: 不同Probe能量的近场光学振幅;b: 傅里叶变换(FT)分析; c:  Lorentz拟合的WSe2块体材料介电常数面内组成;d: 基于Lorentz模型理论计算的能量动量分布(吸收光谱)。Probe探测能量,E 1.46–1.70 eV。

    ③    为了进一步研究光激发下WSe2中波导的色散和动力学,研究者进一步在90 nm的WSe2材料上,通过探测能量E = 1.61 eV,泵浦能量E = 1.56 eV,泵浦功率1.5 mW的实验条件进行了一列的纳米空间分辨超快光谱和理论研究。研究结果表明(图3a,b),研究者成功获取到了不同延迟时间Δt与δq2和δq1的关系。结果表明:光激发后的DY个ps内,虚部q2(图3a)突然下降(δq2<0)并迅速恢复。另一方面,理论计算结果(图3,c)显示了在A-exciton附近(黑色虚线箭头),初始能量Ex处,稳态(黑色虚线)和激发态A-exciton能量Ex’(蓝色箭头)分别的色散关系。

        为了弄清各种瞬态机制,微分色散关系被研究者引入。首先,研究者定义了微分关系:δqj=qj,p – qj,r,(j=1,2 分别代表波矢的实部和虚部,p, pump激发态,r 稳态)。研究者的理论及实验微分色散关系结果(图3 d、e)成功显示了光诱导转变中A-exciton的动力学行为。结果表明:A-exciton附近微分色散的特征是由两个伴随效应引起的:(i)仅在Δt=0时观察到的A-exciton的7 meV蓝移; (ii)A-exciton的漂白(定义为光谱频谱展宽和/或振荡强度降低(见图3d)。 趋势(i)在1 ps内恢复,与YZ耗散的动力学一致(图3a)。因此,研究者得出结论,A-exciton共振的瞬态蓝移是由于相干的光诱导过程所引起。 趋势(ii)持续时间更长,因此归因于非相干激子动力学。


    图3:WSe2中波导模的微分色散和动力学研究。

    a: δq2与Δt曲线;b: δq1与Δt曲线;  c: 平衡和非平衡条件下洛伦兹模型计算的色散关系;d: 理论微分色散关系;e: 实验微分色散关系

        综上所述,波导的瞬态纳米超快成像使我们能够以亚皮秒(ps)时间分辨率来量化光诱导变化的WSe2光学特性。研究者在WSe2上成功观察到了光诱导相速度的大幅变化,这表明所观察到的效应可能在范德瓦尔斯半导体中普遍存在。此外,研究者的研究结果表明,我们可以按需调谐范德瓦尔斯半导体的光学双折射行为。另一方面,研究者的工作开创性地发展了利用tr-SNOM探测超快激子动力学的工作,并为利用波导作为定量光谱学工具研究纳米级光诱导动力学铺平了道路。研究者认为这种超快泵浦探测方法的高空间和时间分辨率,可能同样适用于新奇拓扑材料中的边缘模式和边缘效应的研究。

        neaspec公司利用十数年在近场及纳米红外领域的技术积累,开发出的全新纳米空间分辨超快光谱和成像系统,其Pump激发光可兼容可见到近红外的多组激光器,Probe探测光可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)波段,实现了在超高空间分辨(20 nm)和超高时间分辨(50 fs)上对被测物质的同时表征,可广泛用于二维拓扑材料、范德瓦尔斯(vdW)材料、量子材料的超快动力学研究。

     

    参考文献:

    [1]. Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications , 11, 3567 (2020);https://www.nature.com/articles/s41467-020-17335-w


参与评论

全部评论(0条)

热门问答

成果速递|超高分辨散射式近场光学显微镜在超快研究领域ZX应用

    近年来,范德瓦尔斯(vdW)材料中的表面极化激元(SP)研究,例如等离极化激元、声子极化激元、激子极化激元以及其他形式极化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在独特的激子极化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。

    前期的众多研究工作表明,扫描近场光学显微镜(SNOM)已经被广泛用于稳态波导的可视化表征,非常适合评估范德瓦尔斯半导体的各向异性和介电张量。 如上所述,范德瓦尔斯材料中具有异常强烈的激子共振,这些激子共振能产生吸收和折射光谱特征,这些特征同样被编码在波导模式的复波矢量qr中,鉴于范德瓦尔斯半导体在近红外和可见光范围内对ab-平面的光学极化率有重大影响,因此引起了人们的研究兴趣。

    2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:”Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。                                                                原文导读:

①    在纳米空间分辨超快光谱和成像(tr-SNOM)实验中(图1,a),研究者首先将Probe探测光(蓝色)照到原子力显微镜(AFM)探针JD的顶点上,从探针JD顶点(光束A)散射回的光被离轴抛物面镜(OAPM)收集并发送到检测器。同时,WSe2材料的中的波导被激发并传播到样品边缘后,进而波导被散射到自由空间(光束B)。第二个Pump泵通道(红色)可均匀地扰动样本并改变波导的传播。 通过在WSe2/SiO2界面处的近场tr-SNOM的振幅图像(图1b)可明显观察到约120 nm厚WSe2材料边缘(白色虚线)处形成的特征周期条纹—光波导电场分布。研究者进一步通过定量分析数据,分别获取了稳态和光激发态下,WSe2中波导的光波导的相速度q1,r和q1,p。

图1:纳米空间分辨超快光谱和成像系统对WSe2材料中光波导的纳米成像结果。

a:实验示意图(蓝色为Probe光,红色为Pump光);b:近场纳米光学成像 c: 在稳态下,WSe2边缘的近场光学振幅图像;d: 光激发态下,延迟时间 Δt=1ps的WSe2边缘的近场光学振幅图像;e: 分别对c、d进行截面分析,获取定量数据。Probe探测能量,E=1.45 eV

②    研究者通过变化Probe探测能量范围(1.46–1.70 eV)及其理论计算成功获取了WSe2晶体稳态下的色散关系和理论数据显示A-exciton所对应的能量。

图2:WSe2晶体稳态动力学的时空纳米成像研究。

a: 不同Probe能量的近场光学振幅;b: 傅里叶变换(FT)分析; c:  Lorentz拟合的WSe2块体材料介电常数面内组成;d: 基于Lorentz模型理论计算的能量动量分布(吸收光谱)。Probe探测能量,E 1.46–1.70 eV。

③    为了进一步研究光激发下WSe2中波导的色散和动力学,研究者进一步在90 nm的WSe2材料上,通过探测能量E = 1.61 eV,泵浦能量E = 1.56 eV,泵浦功率1.5 mW的实验条件进行了一列的纳米空间分辨超快光谱和理论研究。研究结果表明(图3a,b),研究者成功获取到了不同延迟时间Δt与δq2和δq1的关系。结果表明:光激发后的DY个ps内,虚部q2(图3a)突然下降(δq2<0)并迅速恢复。另一方面,理论计算结果(图3,c)显示了在A-exciton附近(黑色虚线箭头),初始能量Ex处,稳态(黑色虚线)和激发态A-exciton能量Ex’(蓝色箭头)分别的色散关系。

    为了弄清各种瞬态机制,微分色散关系被研究者引入。首先,研究者定义了微分关系:δqj=qj,p – qj,r,(j=1,2 分别代表波矢的实部和虚部,p, pump激发态,r 稳态)。研究者的理论及实验微分色散关系结果(图3 d、e)成功显示了光诱导转变中A-exciton的动力学行为。结果表明:A-exciton附近微分色散的特征是由两个伴随效应引起的:(i)仅在Δt=0时观察到的A-exciton的7 meV蓝移; (ii)A-exciton的漂白(定义为光谱频谱展宽和/或振荡强度降低(见图3d)。 趋势(i)在1 ps内恢复,与YZ耗散的动力学一致(图3a)。因此,研究者得出结论,A-exciton共振的瞬态蓝移是由于相干的光诱导过程所引起。 趋势(ii)持续时间更长,因此归因于非相干激子动力学。


图3:WSe2中波导模的微分色散和动力学研究。

a: δq2与Δt曲线;b: δq1与Δt曲线;  c: 平衡和非平衡条件下洛伦兹模型计算的色散关系;d: 理论微分色散关系;e: 实验微分色散关系

    综上所述,波导的瞬态纳米超快成像使我们能够以亚皮秒(ps)时间分辨率来量化光诱导变化的WSe2光学特性。研究者在WSe2上成功观察到了光诱导相速度的大幅变化,这表明所观察到的效应可能在范德瓦尔斯半导体中普遍存在。此外,研究者的研究结果表明,我们可以按需调谐范德瓦尔斯半导体的光学双折射行为。另一方面,研究者的工作开创性地发展了利用tr-SNOM探测超快激子动力学的工作,并为利用波导作为定量光谱学工具研究纳米级光诱导动力学铺平了道路。研究者认为这种超快泵浦探测方法的高空间和时间分辨率,可能同样适用于新奇拓扑材料中的边缘模式和边缘效应的研究。

    neaspec公司利用十数年在近场及纳米红外领域的技术积累,开发出的全新纳米空间分辨超快光谱和成像系统,其Pump激发光可兼容可见到近红外的多组激光器,Probe探测光可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)波段,实现了在超高空间分辨(20 nm)和超高时间分辨(50 fs)上对被测物质的同时表征,可广泛用于二维拓扑材料、范德瓦尔斯(vdW)材料、量子材料的超快动力学研究。

 

参考文献:

[1]. Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications , 11, 3567 (2020);https://www.nature.com/articles/s41467-020-17335-w


2020-09-03 12:37:49 473 0
成果速递| 微秒级时间分辨超灵敏红外光谱仪-IRis-F1

引言

    电场对光谱的影响被称为斯塔克效应或电致色变效应,它已在电子斯塔克光谱学中得到广泛利用。类似的效果也可以在振动光谱中观察到,即电场会扰动化学键振动模式的基态和激发态,从而导致其吸收能发生转移,该效应被称为振动斯塔克效应(VSE),并被应用于蛋白质和其他生物系统、电极界面、溶质-溶剂相互作用等研究中。VSE可以帮助我们在分子水平上深入了解材料的静电性质,这在生物学,化学和材料科学领域中是具有普遍意义的重要话题。具体来讲,它能够帮助我们理解电场在化学键非谐性,材料中的能带结构,键合和催化过程以及酶的过渡态稳定化等研究中的影响,而这在蛋白质设计和蛋白质工程及其在生物催化中的应用非常重要。
 
    振动斯塔克光谱(VSS)是一种直接测量凝聚态物相VSE的实验方法,它可以定量给出振动模式对外部电场的敏感性,并用斯塔克调谐率来表示,单位是cm-1/(MV/cm)。一般情况下中红外波段的VSS谱可以通过傅里叶变换红外光谱仪(FTIR)测得。然而,FTIR光谱仪所使用的红外光源一般亮度较低,再考虑到VSS信号的低灵敏度和冷冻样品的各向同性等因素,要得到一个较好的VSS光谱,通常需要较长的测量时间,而电场的长时间施加无疑会增加样品介电击穿的几率。

Z新动态

    幸运的是,近期IRsweep公司及斯坦福大学Jacek Kozuch团队利用微秒级时间分辨超灵敏双光梳红外光谱仪-IRis-F1(Dual-comb spectrometer, DCS)功克服了这一问题[1]。他们利用双光梳光谱仪测量了氟苯的斯塔克光谱,并发现在测量时间缩短250倍的情况下,DSC方法仍可获得与FTIR方法相媲美的定性和定量数据。对氟苯的斯塔克调谐率估算结果显示,DCS方法测得数值((0.81±0.09)cm-1 /(MV / cm))和之前报道测量数值0.84 cm-1 /(MV / cm)相吻合,并且相较传统FTIR方法测得数值((0.89±0.15)cm-1 /(MV / cm))更加jing准。更进一步,在数据信噪比(SNR)方面,DCS表现也更胜一筹。该应用成功证明IRis-F1双光梳光谱仪所用的DSC技术可以通过其高速、短时和高亮度的特点将振动斯塔克光谱的应用领域加以拓展,并且其0.328cm-1的谱采样率相较于传统FTIR也更具优势。 

图文导读 

 
图1:双梳光谱仪(Dual-comb spectrometer, DCS)配置图 
 
 
图2:振动斯塔克效应电场触发示意图和测量参数 
 
 
图3:主要测量结果:DSC方法在1.536 s的测量时间下得到了与FTIR方法384 s测量时间相一致的结果,估算出的塔克调谐率也与之前报道相一致 
 

相关参考 

1. Markus Geiser et al., Vibrational Stark Spectroscopy on Fluorobenzene with Quantum Cascade Laser Dual Frequency Combs, Accepted for publication in Applied Spectroscopy, Spectroscopic Techniques.
 
2019-12-05 10:14:29 579 0
超快时间分辨光谱研讨会丨助力科研人员实现超快梦

时间分辨光谱是指一种能观察物理和化学的瞬态过程并能分辨其时间的光谱。条纹相机技术是一种同时具备高时间分辨(皮秒)与高空间分辨(微米)的瞬态光学过程测量手段,常用于超快系统的脉冲持续时间测量。

TIMART 系列条纹相机卓立汉光Z新推出的面向普通科研市场的通用型条纹相机。


该系列条纹相机采用进口国际先进的同步条纹变像管以及GX像增强器作为核心,集成我们科研人员自主研发的快速扫描控制模块, 在具备皮秒时间分辨的同时,可实现200nm到850nm光谱范围高灵敏响应,并可同时具备单次和同步扫描功能;同步扫描可实现高达300MHz同步测量,从而让条纹相机真正实现了通用化,打破国内垄断,走进普通实验室!

应用方向:

● 超快化学发光

● 超快物理发光

● 超快放电过程

● 超快闪烁体发光

● 时间分辨荧光光谱,荧光寿命

● 半导体材料时间分辨PL谱

● 太阳能电池材料时间分辨PL谱

● 瞬态吸收谱,时间分辨拉曼光谱测量

● 光通讯,量子器件的响应测量

● 自由电子激光,超短激光技术

● 等离子体发光,辐射

● 汤姆逊散射,激光雷达

线下交流会日程:

打破垄断,让条纹相机技术走进大众实验室,助力科研人员实现超快梦想,10月25日我们与您相约,共同探讨超快时间分辨光谱技术及应用,满满干货,机会难得,不见不散!


主题:超快时间分辨光谱研讨会

地点:中科院半导体研究所3号科研楼320会议室

时间:2019年10月25日上午9:30-11:30


报名方式:


▶扫码▶报名



2019-10-23 16:51:57 406 0
近场光学显微镜的应用实例和未来发展趋势
 
2011-01-04 19:00:16 761 1
【AM-AN-22025A】标准粒子在光散射研究中的应用

全文共1834字,阅读大约需要6分钟


关键词:标准粒子;米氏散射


光的散射(scattering of light)是指光通过不均匀介质时一部分光偏离原方向传播的现象。偏离原方向的光称为散射光。散射光频率不发生改变的有瑞利散射、米氏散射和大粒子散射;频率发生改变的有拉曼散射、布里渊散射和康普顿散射等。而标准粒子在光散射研究领域一般研究的是粒子的瑞利散射、米氏散射和大粒子散射,这三种散射划分是根据入射光λ与散射粒子的直径d之间的比例大小来确定的:


①当散射粒子的直径d与入射光波长λ之比(d/λ)很小,即数量级显著小于0.1 时,则属于瑞利散射,散射光强与波长的关系符合瑞利散射定律,即散射光强与入射光的波长四次方成反比,与粒径的六次方成正比。


②当散射粒子粒径与光波长可以比拟(d/λ的数量级为0.1~10)时,随着粒子直径的增大,散射光强与波长的依赖关系逐渐减弱,而且散射光强随波长的变化出现起伏,这种起伏的幅度也随着比值d/λ的增大而逐渐减少,这种散射称为米氏散射。


③当粒子足够大时(d/λ>10),散射光强基本上与波长没有关系,这种粒子的散射称为大粒子散射,也可称之为衍射散射(菲涅尔衍射与夫琅禾费衍射)。


瑞利散射可以说是米氏散射理论模型在小粒子端的近似形式,而衍射散射也可以说是米氏散射理论模型在大粒子端的近似形式,接下来我们将详细了解标准粒子应用于米氏散射理论对其光散射特性研究中,入射光波长、标粒直径以及入射光偏振角对散射光强的影响。


1

入射光波长对散射光强分布的影响

图1.1 是相对折射率m=1.589/1.333,标准粒子直径d=2μm,入射光偏振角φ=45°时,由Mie散射理论及其他相关公式编程计算得到的散射光强与散射角之间的变化关系曲线。对于直径为2μm的聚苯乙烯微球在水中的散射情况,入射光偏振角为45°时,随着入射波长λ的增大,散射光强由主要集中在前向小角度内(波长λ为0.2um时散射光强主要集中在10°散射角内)逐渐变为集中在前向稍大角度内(波长λ为0.8um时散射光强主要集中在30°散射角内),若继续增大波长,散射光强集中的角度也将继续增大。从图1.1可以看出,波长较短时散射光强主要集中在前向小角度内,并且波长越短散射光强集中的角度越小。



图1.1:当m=1.589/1.333,d=2μm,φ=45°时,对应于不同的波长,散射光强与散射角间的关系曲线。


聚苯乙烯微球直径对散射光强分布的影响

图2.1是用可见波段中的0.65μm波长的入射光,在偏振角为45°时,聚苯乙烯微球在水中的散射光强与散射角的变化关系曲线。由图可以看出,微粒直径越大散射光强越集中分布在前向小角度内,粒径大于2μm的粒子的散射光强主要集中在前向散射角约20°内,因此在此种条件下收集前向小角度的散射光强即可获得粒子的较好信息。


图2.2是入射光波长为6μm,偏振角45°时,聚苯乙烯微球在空气中的散射光强与散射角的变化关系曲线。由图可知,所用波长较大时,较大粒子的散射光强不再集中在前向小角度内而是集中的角度逐渐变大,例如粒径大于8μm的粒子的散射光强主要集中在前向散射角约40°内。


图2.1:当m=1.589/1.333, λ=0.65μm, φ=45°时,对应于不同的微粒直径,散射光强与散射角间的关系曲线。 


图2.2:当m=1.589, λ=6μm, φ=45°时,对应于不同的粒径,散射光强与散射角间的变化曲线


入射光偏振角对散射光强分布的影响

图3.1是入射光波长为0.65μm,直径为0.2μm的聚苯乙烯微球在空气中的散射光强与散射角的变化关系曲线。由图可以看出,此种情况下入射光的偏振角不同散射光强与散射角间的关系曲线有很大变化,散射光强分布比较分散,说明此时散射光强的角分布与偏振光的偏振角有关。


图3.1 当m=1.589, λ=0.65μm, φ=0.2μm时,对应于不同的偏振角,散射光强与散射角间的变化曲线。


结论

以上为应用米氏散射理论针对聚苯乙烯微球标准粒子的光散射性质进行的分析,得出以下结论:


(1)波长较短时散射光强主要集中分布在前向小角度内,并且波长越短散射光强集中分布的角度越小。收集前向小角度的散射光可大致反映粒子散射信息。


(2)进行聚苯乙烯微球标粒散射方面的研究时,应该选择可见光波段中波长较短的作为光源,这样既可以得到较好的粒子散射信息,又可以避免光源对人体造成伤害。


(3)粒子直径较大时散射光强主要集中分布在前向小角度内,并且粒子直径越大散射光强越集中分布在小角度内;若所用波长较大时,较大粒子的散射光强不再集中分布在前向小角度内而是集中分布的角度逐渐变大。


参考资料

1.李建立.基于光散射的微粒检测.烟台大学理学院硕士论文,2009:22-25.


2023-01-04 16:50:04 439 0
成果速递| 微秒级时间分辨超灵敏红外光谱仪-IRis-F1 可用于氟苯振动斯塔克光谱快速测量

引言

    电场对光谱的影响被称为斯塔克效应或电致色变效应,它已在电子斯塔克光谱学中得到广泛利用。类似的效果也可以在振动光谱中观察到,即电场会扰动化学键振动模式的基态和激发态,从而导致其吸收能发生转移,该效应被称为振动斯塔克效应(VSE),并被应用于蛋白质和其他生物系统、电极界面、溶质-溶剂相互作用等研究中。VSE可以帮助我们在分子水平上深入了解材料的静电性质,这在生物学,化学和材料科学领域中是具有普遍意义的重要话题。具体来讲,它能够帮助我们理解电场在化学键非谐性,材料中的能带结构,键合和催化过程以及酶的过渡态稳定化等研究中的影响,而这在蛋白质设计和蛋白质工程及其在生物催化中的应用非常重要。
 
    振动斯塔克光谱(VSS)是一种直接测量凝聚态物相VSE的实验方法,它可以定量给出振动模式对外部电场的敏感性,并用斯塔克调谐率来表示,单位是cm-1/(MV/cm)。一般情况下中红外波段的VSS谱可以通过傅里叶变换红外光谱仪(FTIR)测得。然而,FTIR光谱仪所使用的红外光源一般亮度较低,再考虑到VSS信号的低灵敏度和冷冻样品的各向同性等因素,要得到一个较好的VSS光谱,通常需要较长的测量时间,而电场的长时间施加无疑会增加样品介电击穿的几率。

Z新动态

    幸运的是,近期IRsweep公司及斯坦福大学Jacek Kozuch团队利用微秒级时间分辨超灵敏双光梳红外光谱仪-IRis-F1(Dual-comb spectrometer, DCS)功克服了这一问题[1]。他们利用双光梳光谱仪测量了氟苯的斯塔克光谱,并发现在测量时间缩短250倍的情况下,DSC方法仍可获得与FTIR方法相媲美的定性和定量数据。对氟苯的斯塔克调谐率估算结果显示,DCS方法测得数值((0.81±0.09)cm-1 /(MV / cm))和之前报道测量数值0.84 cm-1 /(MV / cm)相吻合,并且相较传统FTIR方法测得数值((0.89±0.15)cm-1 /(MV / cm))更加jing准。更进一步,在数据信噪比(SNR)方面,DCS表现也更胜一筹。该应用成功证明IRis-F1双光梳光谱仪所用的DSC技术可以通过其高速、短时和高亮度的特点将振动斯塔克光谱的应用领域加以拓展,并且其0.328cm-1的谱采样率相较于传统FTIR也更具优势。 

图文导读 

 
图1:双梳光谱仪(Dual-comb spectrometer, DCS)配置图 
 
 
图2:振动斯塔克效应电场触发示意图和测量参数 
 
 
图3:主要测量结果:DSC方法在1.536 s的测量时间下得到了与FTIR方法384 s测量时间相一致的结果,估算出的塔克调谐率也与之前报道相一致 
 

相关参考 

1. Markus Geiser et al., Vibrational Stark Spectroscopy on Fluorobenzene with Quantum Cascade Laser Dual Frequency Combs, Accepted for publication in Applied Spectroscopy, Spectroscopic Techniques.
 
2. 微秒级时间分辨超灵敏红外光谱仪:http://www.qd-china.com/products2.aspx?id=471


2019-12-05 16:00:47 634 0
应用案例 PCR技术医学研究领域应用分享


PCR(polymerase chain reaction,PCR)即聚合酶链反应,是利用一段DNA为模板,在DNA聚合酶和核苷酸底物共同参与下,将该段DNA扩增至足够数量,以便进行结构和功能分析。PCR应用场景广泛,不仅在基础研究方面,还包括医学诊断、法医学和农业科学等各大领域。

近期多篇医学研究多篇文献中均应用到PCR技术及PCR仪产品,小编为大家做一下简要分享。

 


近期南方医科大学临床医学博士生导师、主任医师王雅棣课题组在医学期刊《Oncology Research and Treatment》上发表题为Preliminary Clinical Validation of a Filtration-Based CTC Assay for Tumor Burden and HER2 Status Monitoring in Metastatic Breast Cancer的文章,探索研究基于过滤的CTC测定转移性乳腺癌肿瘤负荷和HER2状态监测的初步临床验证情况。

 

 

背景介绍

 

循环肿瘤细胞(CTC,CirculatingTumorCell)是存在于外周血中的各类肿瘤细胞的统称,因自发或诊疗操作从实体肿瘤病灶(原发灶、转移灶)脱落,大部分CTC在进入外周血后发生凋亡或被吞噬,少数能够逃逸并锚着发展成为转移灶,增加恶性肿瘤患者死亡风险。CTC检测通过捕捉检测外周血中痕量存在的CTC,监测CTC类型和数量变化的趋势,以便实时监测肿瘤动态、评估治疗效果,实现实时个体治疗。循环肿瘤细胞 (CTC) 承载着从基因组改变到蛋白质组构成的多维肿瘤相关信息,是一种很有前途的液体活检材料。 CTC 的临床有效性在转移性乳腺癌 (MBC) 中得到了最广泛的研究。  CELLSEARCH®检测是目前使用最广泛的方法,研究者们同时也在寻求替代策略。一种基于过滤的微流体装置已被用于富集 CTC,但其临床相关性仍然未知。

 

方法:在这项初步研究中,作者研究团队招募了 47 名 MBC 患者,并评估了上述 CTC 检测在肿瘤负荷监测和人表皮生长因子受体 2 (HER2) 状态测定方面的性能。结果:在基线时,51.1% 的患者 (24/47) 为 CTC 阳性。在伴随着较差的放射学反应评估的样本中,CTC 计数和阳性率也显著升高。连续抽血表明,与血清标志物癌胚抗原和癌抗原 15-3 相比,CTC 计数能够更准确地监测肿瘤负荷。此外,与之前的报告相比,CTC-HER2 状态与肿瘤-HER2 状态中度一致。选定样本中的 HER2 拷贝数测量进一步支持了 CTC-HER2 状态评估。

结论:这项研究的初步结果表明,CDC 检测在几个方面都有希望,包括敏感的 CTC 检测、准确的疾病状态反映和 HER2 状态确定。目前需要更多的研究来验证这些发现,并进一步表征CTC测定的价值。

在实验验证中,柏恒科技RePure-A 梯度PCR仪发挥了一定作用,助力作者实验研究进行。

 

而在另一篇发表在《Frontiers in Molecular Biosciences》期刊上的论文,柏恒科技PCR仪也发挥了不小作用。哈尔滨医科大学附属二院肾内科主任医师、博士生及硕士生导师李冰课题组发表的题为Bioinformatic Analysis Combined With Experimental Validation Reveals Novel Hub Genes and Pathways Associated With Focal Segmental Glomerulosclerosis的文章,作者研究团队利用生物信息学分析与实验验证相结合,揭示了与局灶性节段性肾小球硬化相关的新型Hub基因和通路。

 

 背景介绍:局灶节段性肾小球硬化症 (focal segmental glomerulosclerosis, FSGS)是一种临床病理综合征,临床表现为大量蛋白尿或肾病综合征,病理以局灶节段分布的肾小球硬化病变及足细胞变性所致足突融合或消失为特征,多数表现为激素治疗抵抗,并进行性发展至终末期肾病 (ESRD)。本研究旨在探索与FSGS相关的枢纽基因和通路,以确定潜在的诊断和治疗靶点

方法:作者团队从 Gene Expression Omnibus (GEO) 数据库下载了微阵列数据集 GSE121233 和 GSE129973。数据集包括 25 个 FSGS 样本和 25 个正常样本。使用R包“limma”识别差异表达基因(DEG)。Gene Ontology (GO)功能和(KEGG)通路富集分析使用数据库进行注释,可视化和集成发现 (DAVID),用于识别 DEG 的通路和功能注释。蛋白质-蛋白质相互作用(PPI)是基于检索相互作用基因(STRING)数据库的搜索工具构建的,并使用 Cytoscape 软件进行可视化。然后使用 Cytoscape 的 cytoHubba 插件评估 DEG 的中心基因。使用 FSGS 大鼠模型通过定量实时聚合酶链反应 (qRT-PCR) 验证中shu基因的表达,并进行接受者操作特征 (ROC) 曲线分析以验证这些中(shu)枢基因的准确性。

结果:在两个 GSE 数据集(GSE121233 和 GSE129973)中共识别出 45 个 DEG,包括 18 个上调和 27 个下调的 DEG。其中,选择了5个具有高度连通性的枢纽基因。在 PPI 网络中,前 5 个中(shu)枢基因中,FN1 上调,而 ALB、EGF、TTR 和 KNG1 下调。 FSGS大鼠的qRT-PCR分析证实FN1的表达上调,EGF和TTR的表达下调。 ROC 分析表明 FN1、EGF 和 TTR 对 FSGS 显示出相当大的诊断效率。

结论:通过生物信息学分析结合实验验证,鉴定出三个新的 FSGS 特异性基因,这可能会促进对 FSGS 的分子基础的理解,并为临床管理提供潜在的治疗靶点。

实验验证中,实验团队应用了柏恒科技荧光定量PCR仪进行样品测定并分析。

 

除了以上列出的几篇文献,柏恒科技PCR仪在生物科研、动物疫病等方面均有广泛应用,下期我们再继续分享。

 

文献中PCR仪产品简介

RePure系列智能二维梯度PCR仪

本系列PCR仪具有二维梯度摸索功能,多种梯度摸索模式;

自适应压杆式热盖,合盖紧盖一步到位;

前进后出式风道,机器可并排放置,节约实验空间;


Q3200系列荧光定量PCR仪

本系列荧光PCR仪采用四通道双16孔模块设计,可实现一机多用;

最大升降温速率8℃/s,大大节约实验时间;

体积小,重量轻,方便携带;

 

更多PCR仪技术应用,欢迎关注柏恒科技,我们提供各类梯度PCR仪、荧光PCR仪等,并为客户提供生物学相关检测解决方案。


2022-05-23 15:08:28 443 0
LUMICKS荧光光镊系统在相分离研究领域的应用

       

       相分离 (Phase separation)是目前发展非常迅速的一个研究领域,大量研究表明相分离在细胞中普遍存在,与基因组的组装、转录调控等生物学过程密切相关;相分离的失衡可能会导致一些疾病(如神经退行性疾病)的发生,通过干扰异常“相分离”也有希望会成为ZL相关疾病的新手段。


       由于技术的限制,研究相分离的方法并不多。大部分相分离的研究仍在依赖液滴间自发的相互作用,且仅能获得"是"与"否"融合的结果,无法进行更多的融合相关参数的比较。而实际上相分离的过程非常复杂,这就需要更加精密的技术手段。LUMICKS公司的荧光光镊系统C-Trap将光镊系统、共聚焦成像和微流控系统结合,可以实时的对单个蛋白液滴进行捕获、操控和测量(力学性质+荧光信号),为相分离的研究提供新思路。


       以RNA/RNP的相互作用对蛋白液滴性质与融合的影响为例,研究人员使用C-Trap光镊系统诱导液滴融合,比较了不同凝结体的性质,通过融合时间对其融合能力和液滴稳定性进行了评估。 K/G-rich多肽序列与poly(U)RNA的融合速度 (平均0.0028 s/µm) 约为R/G-rich多肽序列与poly(A)RNA融合速度的两倍 (图1)。以上结果表明,前者具有更高的流动性和更低的黏度,以及短程引力和长程力调节RNA–多肽凝结过程,包括结合与凝固。通过进一步研究来源于FUS模型的R/G-rich序列与poly(A)或poly(U) RNA的相互作用可以确认,相变性质因序列不同而不同。


图1. 不同RNA-RNP复合体在光镊系统诱导下的融合状态随时间变化的图像。R/G-rich序列的RNA-RNP复合体融合时间相对K/G-rich序列更长。 Poly(A)RNA相对poly(U) RNA会延长融合时间。


C-Trap系统具有多种适合测量液滴性质并对不同实验条件下的结果进行比较的功能。系统的空间与时间的高分辨率可在操控液滴的同时检测液滴的活动。


•  可操控液滴诱导融合

•  可检测不同实验条件下液滴的融合时间变化

•  可通过微流变学实验检测液滴的黏弹性

•  可检测单一液滴在不同实验条件下的各项性质



2020-11-24 09:16:58 452 0
成果速递|小型无掩膜光刻直写系统(MicroWriter)在复旦大学包文中教授课题组的Z新研究应用
    随着电子信息产业的高速发展,集成电路的需求出现了井喷式的增长。使得掩膜的需求急剧增加,目前制作掩膜的主要技术是电子束直写,但该制作效率非常低下,并且成本也不容小觑,在这种背景下人们把目光转移到了无掩膜光刻技术。
    英国Durham Magneto Optics公司致力于研发小型台式无掩膜光刻直写系统(MicroWriter ML3),为微流控、MEMS、半导体、自旋电子学等研究领域提供方便GX的微加工方案。传统的光刻工艺中所使用的铬玻璃掩膜板需要由专业供应商提供,但是在研发过程中,掩膜板的设计通常需要根据实际情况多次改变。无掩膜光刻技术通过以软件设计电子掩膜板的方法,克服了这一问题。与通过物理掩膜板进行光照的传统工艺不同,激光直写是通过电脑控制DMD微镜矩阵开关,经过光学系统调制,在光刻胶上直接曝光绘出所要的图案。同时其还具备结构紧凑(70cm X 70cm X 70cm)、高直写速度,高分辨率(XY:<1 um)的特点。采用集成化设计,全自动控制,可靠性高,操作简便。

    
     复旦大学微电子学院包文中教授课题组主要的研究领域包括二维层状材料的能带调控、器件工艺及应用,包括二硫化钼(MoS2),黑磷等。近日,其课题组利用小型台式无掩膜光刻直写系统(MicroWriter ML3)在新型二维层状材料MoS2的器件制备、转移和应用等方面取得了一系列瞩目的研究成果: 

(一) SMALL: 高性能的具备实际应用前景的晶圆级MoS2晶体管 

    原子层级的过渡金属二硫化物(TMD)被认为是下一代半导体器件的重要研究热点。然而,目前绝大部分的器件都是基于层间剥离来获取金属硫化物层,这样只能实现微米级的制备。在本文中,作者提出一种利用化学气相沉积(CVD)制备多层MoS2薄层,进而改善所制备器件的相关性能。采用四探针法测量证明接触电阻降低一个数量级。进一步,基于该法制备的连续大面积MoS2薄层,采用小型无掩膜光刻直写系统(MicroWriter ML3)构筑了顶栅极场效应晶体管(FET)阵列。研究表明其阈值电压和场效应迁移率均有明显的提升,平均迁移率可以达到70 cm2V-1s-1,可与层间剥离法制备的MoS2 FETZ 好结果相媲美。本工作创制了一种规模化制备二维TMD功能器件和集成电路应用的有效方法。 

图1. (a-e) 利用CVD法制备大面积多层MoS2的原理示意及形貌结果。(g, h, i, j) 单层MoS2边界及多层MoS2片层岛的AFM测试结果,拉曼谱及光致发光谱结果

图2. 利用无掩膜激光直写系统(MicroWriter)在MoS2薄层上制备的多探针(二探针/四探针)测量系统,以及在不同条件下测量的接触电阻和迁移率结果。证明所制多层MoS2的平均迁移率可以达到70 cm2V-1s-1

图3. 利用无掩膜光刻直写系统(MicroWriter)制备的大面积规模级MoS2 FET阵列,及其场效应迁移率和阈值电压的分布性测量结果,证明该规模级MoS2 FET阵列具备优异且稳定的均一特性 

(二) Nanotechnology: 用于高性能场效应晶体管的晶圆级可转移多层MoS2的制备

    利用化学气相沉积(CVD)制备半导体型过渡金属二硫化物(TMD)是一种制备半导体器件的新途径,然而实现连续均匀的多层TMD薄膜制备仍然需要克服特殊的生长动力学问题。在本文中,作者利用多层堆叠(layer-by-layer)及转移工艺,制备出均匀、无缺陷的多层MoS2薄膜。同时,利用无掩膜光刻直写系统(MicroWriter)在其基础上制备场效应晶体管(FET)器件。分别实现1层、2层、3层和4层MoS2 FET的制备,并深入研究不同条件下器件的迁移率变化,Z终发现随着MoS2堆叠层数的增加,电子迁移率随之增加,但电流开关比反而减小。综合迁移率和电流开关变化,2层/3层MoS2 FET是Z 优设计器件。此外,双栅极结构也被证明可以改善对多层MoS2通道的静电控制。 

图4 (a) 多层MoS2结构的制备/转移流程示意;(b) 单层/双层MoS2薄膜的光学形貌;(c) 双层MoS2薄膜的AFM表面形貌结果;(d) 单层/双层MoS2薄膜的拉曼谱结果

图5 (a) 背栅极MoS2 FET阵列制备流程示意;(b) 利用无掩膜激光直写系统(MicroWriter)制备的MoS2 FET器件的表面光学形貌(利用MicroWriter特有的虚拟掩膜对准技术(VMA),可以GX直观地在感兴趣区域实现图形曝光);(c-f) 不同结构的MoS2 FET器件的输出特性及转移特性测量结果

图6 (a) 利用MicroWriter在Si/SiO2晶圆上制备的大范围MoS2 FET器件阵列,其中包含1层和2层MoS2;(b) 相应阵列区域的迁移率和阈值电压分布结果,证明其优异的均一特性

图7 (a) 双栅极MoS2器件的结构原理;(b) 利用无掩膜激光直写系统(MicroWriter)制备的大面积双栅极MoS2器件的形貌结果;(c, d) 2层MoS2双栅极器件的电学测量结果。




相关参考:

1. 小型无掩膜光刻直写系统:http://www.qd-china.com/products2.aspx?id=297
2. High-Performance Wafer-Scale MoS2 Transistors toward Practical Application. Small 2018, 1803465
3. Wafer-scale transferred multilayer MoS2 for high performance field effect transistors. Nanotechnology, 2019, 30,174002


2019-10-16 10:05:04 597 0
全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快

全共线多功能超快光谱仪BIGFOOT


     MONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能


图1. 全共线多功能超快光谱仪BIGFOOT


       全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。


全共线多功能超快光谱仪BIGFOOT主要技术参数:


高精度激光扫描显微镜NESSIE


      MONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。


                  

图2. 高精度激光扫描显微镜NESSIE

 

       高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。


        

图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷

 

BIGFOOT+NESSIE应用案例:


1. 高精度激光扫描显微镜用于材料表征


      美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力


图4.  (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线


【参考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022).

 

2.二维材料中激子相互作用和耦合的成像研究


      过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。


图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量


【参考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022)

 

3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究


      当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。黄迪教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学对于理解导致其形成的成对和磁不稳定性至关重要。


图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱

【参考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)



2023-05-18 16:59:34 211 0
文献速递ㅣ动物活体成像系统在白血病耐药机制研究中的应用

慢性髓系白血病(Chronic myeloid leukemia, CML)是一种由造血干细胞染色体t(9;22)(q34;q11)易位引起,并在分子水平上形成Bcr-Abl融合基因的骨 髓增生性疾病。使用酪氨酸激酶抑 制剂(Tyrosine kinase inhibitors, TKIs)可以缓解疾病,但TKIs耐药性是治 疗失败或诱发急性白血病的主要问题。


根据Abl激酶结构域点突变的不同,TKIs的耐药机制主要包括Bcr-Abl依赖型和非Bcr-Abl依赖型。Bcr-Abl依赖型的耐药性最常见,它会干扰小分子酪氨酸激酶抑 制剂伊马替尼(Imtatinib, IM)结合和随后的激酶抑 制。然而,超过50%的耐药CML患者中并没有Bcr-Abl突变。


▲ 慢性髓系白血病


蛋白激酶C(Protein kinases C, PKCs)在细胞周期调节、增殖、凋亡和造血干细胞分化等多种细胞过程中发挥作用,并和Bcr-Abl协调参与对恶性细胞转化至关重要的几种信号通路。实验和临床证据表明,使用PKC抑 制剂可以有效地治 疗CML。最近,不同的PKC亚型也被报道参与CML细胞的耐药,但是,PKC信号在CML TKIs耐药中的作用并不清楚。


▲ 蛋白激酶C的晶体结构


近日,贵州医科大学王季石教授课题组根据先前的研究结果:一种泛PKCs抑 制剂星孢菌素(Stauroporine)在低浓度下可以有效地逆转K562R细胞(没有任何突变)的IM耐药,因此推测Bcr-Abl非依赖型IM耐药可能是由PKC亚型介导。在此基础上,鉴于白血病干细胞(Leukemia stem cells)在CML TKIs耐药中起基础性作用,研究首次在Bcr-Abl非依赖型TKI耐药的CML患者CD34+细胞中检测到9种PKCs亚型的表达。对PKC亚型异常表达所介导的机制进行深入研究时,使用博鹭腾AniView100多模式动物活体成像系统拍摄的活体成像实验结果,从体内进一步证明PKC-β的过表达与肿瘤耐药密切相关,表明靶向PKC-β过表达可能是克服CML耐药的一种新的治 疗机制。


相关成果已发表在期刊《Journal of Cellular Physiology》。


▲抑 制PKC-β可增强IM对CML细胞的体内杀伤作用

(a) 博鹭腾AniView100拍摄的不同药物处理的CML小鼠模型中白血病细胞的活体示踪成像图。LY333531: PKCβ 抑 制剂。

(b) 流式细胞仪检测各组小鼠CD33+和CD45+细胞。

(c) 直方图显示流式细胞仪检测的各组小鼠CML细胞的差异。

(d) 各组小鼠的生存曲线。

(e、f) 比较各组小鼠脾 脏体积和重量。

(g、h) Wright‘s染色检测各组小鼠外周血中CML的进展情况。统计学处理采用t检验。**表示p<0.01,*表示p<0.05。



参考文献

1、Ma D, et al. PKC‐β/Alox5 axis activation promotes Bcr‐Abl‐independent TKI‐resistance in chronic myeloid leukemia[J]. Journal of Cellular Physiology, 2021.

2、Zubair M S, et al. Cembranoid Diterpenes as Antitumor: Molecular Docking Study to Several Protein Receptor Targets[C]// International Conference on Computation for Science & Technology. 2015.


2021-08-20 17:33:32 464 0
迈克耳孙干涉仪在哪些领域应用
 
2016-03-20 06:47:38 392 1

1月突出贡献榜

推荐主页

最新话题