仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

同行聚力·质造未来丨2023年天美色谱质量千里行足迹(一)

天美仪拓实验室设备(上海)有限公司 2023-04-10 16:41:36 90  浏览

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

同行聚力·质造未来丨2023年天美色谱质量千里行足迹(一)

2023-04-10 16:41:36 90 0
质量千里行丨天美LS千里行活动第二弹



2022-04-22 13:17:03 135 0
质量千里行丨天美色谱产品回访活动-西南篇


2022-04-22 13:15:44 144 0
天美第23届质量千里行正式启动!

2022-04-22 13:11:46 126 0
质量千里行丨分析产品线华西区活动回顾

2023 质量千里行

华西  活动回顾

分析产品线

三月喜,千山绿;春日芳华,风和闻马。天美公司秉承着“品牌铸造价值,服务赢得未来”的服务理念,值天美成立35周年之际,于3月15日启动了“同行聚力,质造未来”第24届质量千里行活动。

天美公司分析仪器产品线,携天美旗下爱丁堡品牌全线产品,在全国已完成多场技术交流会及用户回访活动。


N O.1

技术交流会

在华西区,分析仪器产品线于西安交通大学、新疆理化所、河南开封举办技术交流会,介绍最 新荧光光谱仪、拉曼光谱仪、红外光谱仪等分子光谱领域的最 新产品、技术和相关热门应用。这些技术交流会,引起了广大科研用户的热切关注和积极参与:在技术交流会上,大家认真听取产品专家的报告,并进行拍照记录;会议期间,和产品专家积极讨论实验测试方案和最 新光谱分析技术。


3月9日西安交通大学


3月15日中科院新疆理化所


3月18日河南开封


NO.2

用户回访

质量千里行活动期间,分析仪器产品线销售团队,联合售后团队、市场团队对天美旗下分子光谱仪器进行用户回访和上机培训,受到了用户的广泛认可和一直好评。


河南大学


陕西师范大学


西北大学


石河子大学


西安交通大学


新疆师范大学


售后服务一直是仪器用户最关心的问题,天美公司多年来坚持关注售后服务环节,让用户无后顾之忧。“同行聚力,质造未来”,天美公司致力于用高品质的产品和技术支持用户,用高质量的服务回馈用户。


PART 03

天美分析产品线

天美分析仪器产品线致力于为科研、教育、检测等行业提供高质量的实验设备和技术服务。

产品主要聚焦于1.天美旗下英国爱丁堡品牌光谱系列产品(如荧光光谱仪、拉曼光谱仪、红外光谱仪、紫外-可见分光光度计、激光器、气体传感器等);2.天美品牌光谱仪(如紫外-可见分光光度计、荧光分光光度计等);3.天美旗下英国Isotopx质谱分析仪(如Sirix同位素比质谱仪、NGX600惰性气体质谱仪、Phoenix热电离同位素质谱仪等);4.天美旗下瑞士普利赛斯水分灰分仪和法国法莱宝高低温冲击系统。


2023-04-04 14:17:09 141 0
天美讲堂丨相对量子产率的测定

相对量子产率



量子产率是一个基本的光物理参数,它描述了一个样品的荧光效率,被定义为发射的光子数量与样品吸收的光子数量的比率。准确和可靠的量子产率测量对包括显示材料、太阳能电池、生物成像和药物开发等应用非常重要。


有两种测量量子产率的方法:绝 对法和相对法。在绝 对法中,量子产率是用积分球直接测量的,而在相对法中,未知样品的荧光强度与标准样品的荧光强度相比较,以计算出未知样品的量子产率。爱丁堡FS5荧光光谱仪(图1)通过相对法测量2-氨基吡啶(2AMP)的量子产率。2AMP在硫酸(H2SO4)中的量子产率以前曾被用作紫外-可见光范围内的参考标准。2AMP的量子产率在1968年测量为60%1,在1983年测量为66%2。这些文献中的量子产率参考值现在已经有几十年的历史了,这里我们用1M H2SO4中的硫酸奎宁(QBS)作为参考标准,用爱丁堡FS5荧光光谱仪对2AMP在1M H2SO4中的量子产率进行了重新测量和评估。


图1:FS5荧光光谱仪


方 法

2AMP的相对量子产率可以通过以下公式计算


公式1


其中下标S和R分别表示待测样品(2AMP)和参比样品(QBS)。Φ是量子产率,I是综合荧光强度,A是激发波长下的吸光度。n是平均发射波长下用于待测样品和参比样品的溶剂的折射率。本文中,2AMP和QBS都使用了相同的溶剂(1M H2SO4),所以这项值为1。


为了提高计算出的量子产率值的准确性和精确性,最 好的方法是准备和测量几个不同浓度的待测样品和参比样品。通过绘制2AMP和QBS的I与1-10-A的关系,可以用斜率(GradS和GradR)来计算量子产率(公式2)。这种方法可以防止潜在误差,如染料聚集,在较高的浓度导致的非线性。


公式2


准备五种不同浓度的2AMP 1M H2SO4的溶液和五种QBS在1M H2SO4中的溶液。使用FS5荧光光谱仪测量吸收和荧光光谱,该荧光光谱仪配备有150W氙灯、PMT-980检测器和SC-05比色皿支架。


2AMP和QBS的吸收和发射光谱首先,通过使用FS5的内置透射检测器测量吸收光谱来确定五个浓度2AMP和QBS溶液的吸光度值。在激发波长(310 nm)下,溶液的吸光度值被保持在0.1以下,以尽量减少内滤效应的影响,吸光度值范围在0.008和0.098之间。2AMP和QBS的归一化吸收光谱显示在图2a中。



图2:(a)2AMP(绿色)和QBS(紫色)的归一化吸光光谱。(b) 2AMP(绿色)和QBS(紫色)的归一化荧光光谱。(c) 不同浓度的2AMP的荧光光谱。C1溶液是浓度最 低的(在310nm处的吸光度=0.01),C5是浓度 最 高的(在310nm处的吸光度=0.098)。所有光谱都是在爱丁堡FS5荧光光谱仪获得。


接下来,采集了5个2AMP和QBS溶液的荧光光谱。荧光光谱仪检测的荧光强度取决于激发波长、激发和发射带宽以及积分时间。通过保持这些参数相同,2AMP和QBS的综合荧光强度、IS和IR可以比较。实验参数是λex=310 nm,激发和发射带宽分别设置为3 nm和0.5 nm,步长为1 nm,积分时间为0.5 s。图2b显示了2AMP和QBS的归一化荧光光谱。


使用荧光线性分析来确定量子产率

每个浓度的2AMP的荧光光谱被合并到Fluoracle中一张图(图2c)。公式2中的斜率GradS可以使用Fluoracle的线性分析功能从图2c中的2AMP光谱中计算出来,如图3所示。


为了计算GradS校准参数被设置为面积(橙色框),变量名称被设置为1-10-A(绿色框)。按 "应用 "计算面积(综合荧光强度)。然后输入从吸收光谱中得到的每种浓度的2AMP的吸光度项(1-10-A)值(浅蓝色框)。


图3:Fluoracle中图2c的线性分析


校准类型为线性,并勾选了通过零点的曲线(深蓝色框)。荧光强度与吸光度的积分项与线性拟合一起绘制在屏幕的右下方。曲线的斜率(GradS)为K1(红色框)。然后对五个QBS光谱重复同样的过程来计算斜率GradR。两条曲线及其计算的斜率都显示在图4中。



图4:综合荧光强度与2AMP和QBS的吸光度的关系


QBS在H2SO4中的量子产率的文献值为ΦR=56.1%4。然后用公式2计算出2AMP在H2SO4中的量子产率为64.3%,这个值与以前报道的60%和66%的值一致。


结 论

爱丁堡FS5荧光光谱仪用相对法测定2AMP在1M H2SO4中的量子产率。通过FS5 Fluoracle软件的线性分析功能,数据分析变得简单。使用QBS作为参考标准,计算出2AMP的量子产率为64.3%。这个数值与以前的文献报告相一致,表明FS5可以进行准确和可靠的相对量子产率测量。


参考文件

1. R. Rusakowicz, A. C. Testa, 2-Aminopyridine as a standard for low-wavelength spectrofluorimetry. J. Phys. Chem. 72, 2680–2681 (1968).

2. S. R. Meech, D. Phillips, Photophysics of some common fluorescence standards. J. Photochem. 23, 193–217 (1983).

3. K. L. Wong, J. C. Bünzli, P. A. Tanner, Quantum yield and brightness. J. Lumin. 224, 117256 (2020).

4. B. Gelernt, A. Findeisen, A. Stein, J. A. Poole, Absolute measurement of the quantum yield of quinine bisulphate. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 70, 939–940 (1974).


2022-11-30 12:09:50 203 0
喜讯丨热烈庆祝天美授牌上海市院士(专家)工作站

5月25日,以“智汇科技,创享未来”为主题的2023年长三角G60科创走廊(松江)科技节开幕,致力于打造成为科技成果的发布会、科技工作者的欢庆日和公众科技参与的嘉年华。



产学研联合是增强科技与经济效益结合的有效途径。科技节开幕活动中,天美及其他13家松江企业,获评2022年度上海市院士(专家)工作站,并在会上授牌。





院士专家工作站的设立,将有效实现科技成果的转化,帮助天美解决面向市场需求的产品开发难题,推动产品对前瞻性应用的探索,助力研发型人才的培养,为天美发展注入新动能!


2023-05-31 11:22:34 108 0
天美讲堂丨拉曼光谱仪中的光栅,您选对了吗?

简介

衍射光栅用于将多色光分离成其组成的波长。在拉曼光谱仪中,衍射光栅用于将收集的拉曼散射的组成波长分离到CCD相机的不同像素上进行检测。所有拉曼光谱仪需要至少一个衍射光栅,并且经常配置多个衍射光栅以允许用户对其样品和激发波长进行最 佳的光栅选择。


图1. 爱丁堡仪器拉曼光谱仪RMS1000(左)和RM5(右)


当通过拉曼光谱分析样品时,可能需要多个激发源来覆盖用户样品的范围,例如,紫外、可见或近红外区域的激光。RM5拉曼光谱仪最 多可内置三个激光器,RMS1000拉曼光谱仪最 多可内置五个激光器,并可选择外置激光器。为了使用多个激光器,RM5和RMS1000的光谱仪可以容纳多达五个衍射光栅,从而使光栅最适合激光器的波长和用户的要求。用户可以从RM5和RMS1000上的Ramacle®软件(图2)的下拉菜单中选择光栅。选择后,光栅塔轮将自动移动到所选光栅,这意味着用户无需手动更换光栅。然后,Ramacle®将显示该光栅和激发激光器在波数和波长上可实现的光谱范围。在为拉曼光谱仪选择衍射光栅时,有四个主要考虑因素:光谱分辨率、光谱范围、闪耀波长和激发波长。


图2. Ramacle®软件的测试界面,标记处显示光栅的选择


光谱分辨率

增加刻线密度增加光谱分辨率

光栅具有固定的刻线密度(以每毫米刻线为单位,gr/mm),可控制光的色散。刻线密度越高,光谱分辨率越好,例如,1200 gr/mm光栅将提供比150 gr/mm光栅更高的光谱分辨率。图3显示了低和高刻线密度光栅对光的色散。较高刻线密度光栅将光传播到CCD的较大区域,增加了光谱分辨率。简单的经验法则是,当刻线数量加倍时,分辨率大致加倍。


图3. 低和高刻线密度光栅对光的色散


为了说明刻线密度对光谱分辨率的影响,使用五个衍射光栅和532nm激发波长测量了硅衬底上MoS2的光谱(图4)。MoS2的分析侧重于350-450 cm-1之间的两个峰。这些峰对于检测存在的MoS2的层数至关重要。使用300 gr/mm光栅,光谱分辨率不足以分辨两个单独的峰,仅可以看到单个宽特征。随着gr/mm的增加,我们看到两个单独峰的分辨率提高。这两个峰的分辨率越高,关于峰位置和层数的信息就越准确。这一测量说明了光谱分辨率的重要性。


图4. 使用5个不同光栅获取的MoS2的拉曼光谱


图4还显示了样品中硅峰的半峰宽(FWHM)值。Ramacle®可以提供FWHM值(峰值宽度为最 大强度的一半),并在光谱上显示这些值。从300 gr/mm光栅开始,我们观察到的FWHM为22.9 cm-1。当使用1800 gr/mm的光栅时,该值降至4.8 cm-1,这突出了随着刻线密度的增加,光谱分辨率的提高。


光谱范围

增加刻线密度减小光谱范围

改变光栅的刻线密度会影响所讨论的光谱分辨率,但也会影响光谱范围。将环己烷样品放置在比色皿支架中,使用所有五个光栅用638 nm激发进行分析(图5)。光谱再次显示了分辨率如何随着刻线密度的增加而增加,但现在也显示了高刻线密度的缺点,降低了光谱范围。光谱仪的光谱范围与光栅的刻线密度成反比。


图5. 使用不同光栅和1800gr/mm光栅(品红色)扩展扫描的环己烷的拉曼光谱。插图显示了具有300 gr/mm和1800 gr/mm光栅的样品的高波数区域。


上述光谱清楚地表明,随着刻线密度的增加,光谱范围减小。对于300 gr/mm,光谱范围达到约7400 cm-1,而1800 gr/mm光栅仅达到约1100 cm-1。因此,获取的拉曼光谱的光谱范围与分辨率之间存在固有的取舍。


为了两全其美,RM5和RMS1000的Ramacle®软件具有一个称为扩展扫描的功能。在扩展扫描中,Ramacle®软件在衍射光栅的不同中心波长位置采集一系列光谱,然后将这些光谱自动拼接在一起,以在宽光谱范围内提供单个拉曼光谱。该功能使用户能够同时使用高gr/mm光栅实现高光谱分辨率和宽光谱范围。图5显示了拼接1800 gr/mm光谱(品红色)的示例,其范围高达~5000 cm-1。


扩展扫描的缺点是采集时间的增加。由于光栅需要移动并采集多个光谱,采集时间将增加,对于上述示例(0-5000 cm-1),扩展扫描是将九个单个光谱拼接在一起。因此,如果曝光时间为1s,则最 终光谱将需要9s才能获取。如图5中的插图所示,1800 gr/mm光栅的光谱分辨率提高,可以更好地分辨高波数区域的峰值,而分辨率较低的300 gr/mm光栅可以更快地进行测量。


闪耀波长

闪耀波长表示光栅优化的激发波长

衍射光栅的效率总是与波长有关。最 大衍射效率的波长称为闪耀波长。衍射光栅可以用不同的闪耀波长制造,以优化不同的波长区域。通常,可见光和近红外激光器可以使用具有相同闪耀波长的光栅,同时保持相似的效率;然而,当在“标准”拉曼激光器的极端使用激光器时,例如,≤325nm和≥1064nm激发,需要不同闪耀波长的光栅来优化光谱仪。例如,当光栅被称为“Blaze 300 nm”时,它将针对UV进行优化,而“Blaze 750 nm”将针对NIR进行优化。


图6显示了两个600 gr/mm光栅的绝 对效率曲线。一个具有550 nm的闪耀波长,非常适合可见光激光器,另一个750 nm,适合NIR激光器。曲线揭示了为什么闪耀波长很重要。如果用常用的785nm激光器激发,550nm闪耀光栅将仅具有约52%的效率。然而,NIR优化的光栅将具有约71%的高得多的效率。这将对所需的频谱质量和采集时间产生重大影响。


图6. 突出显示了两个激光器(532nm和785nm)下,闪耀波长分别为550nm和750nm的两个600gr/mm光栅的绝 对效率曲线。


光致发光测量

低刻线密度光栅可用于UV和可见激光器以获取PL光谱

拉曼光谱仪也可用于测量光致发光(PL),通常使用UV或可见光激发。PL光谱通常非常宽,应选择低刻线密度光栅以获得尽可能宽的光谱范围。在图7所示的示例中,使用532 nm激光分析笔墨。通过使用300 gr/mm光栅,光谱范围可以覆盖1200 nm,这意味着用户可以很容易地看到700 nm处的PL峰。


由于PL非常强,当使用300gr/mm光栅时,任何拉曼峰都会丢失到PL峰的强度中。然而,通过改变为1800gr/mm光栅,仍然可以观察到拉曼光谱。在这样做时,来自墨水的拉曼峰可以在没有PL干扰的情况下被分辨,因为它发生在PL峰或检测器饱和之前。以这种方式使用光栅的组合允许从样品中获得PL和拉曼光谱。


图7. 使用300gr/mm(绿色)和1800gr/mm(红色)光栅获取的笔墨的PL和拉曼光谱


激发波长

UV和可见激光器适用于高刻线密度的光栅

NIR激光器适用于低刻线密度的光栅

可以认为光栅的色散功率在波长方面是恒定的;然而,拉曼光谱使用能量相关单位,波数(cm-1),表示入射光子的能量偏移。这意味着色散拉曼光谱仪的光谱分辨率随着激光激发波长的降低(即从红色到绿色再到蓝色)而降低。因此,当使用785nm激光器时,实现与532nm激光器相同分辨率所需的光栅将需要更少的gr/mm。


此外,由于色散与波长有关,因此光栅可以在一个工作范围内成功运行。刻线密度为n的光栅的理论波长极限为λ=2/n。例如,2400 gr/mm光栅将被限制在光谱的绿色端,即可见光和紫外激光器,而3600 gr/mmm光栅在500nm后不会衍射太多,使其适合于UV激发,而不适合于NIR激发。


图8显示了五个常用光栅的532 nm(绿色)和785 nm激光器(红色)的光谱范围。与可见光选项相比,近红外激光器的光谱范围明显减小。该图还显示了从50 cm-1开始的单次扫描和扩展扫描选项的范围。


图8. 使用532nm和785nm激发的5个光栅的光谱范围


拉曼光谱中使用的三种激光可以大致分为三个区域:紫外、可见光和近红外。对于UV激光器,建议使用高刻线密度光栅,例如2400 gr/mm和3600 gr/mmm,这主要是由于在较低波长下激发时光谱分辨率的固有降低。此外,UV激光器通常用于研究例如半导体样品中因应力和应变引起的小峰值变化,因此需要高光谱分辨率。


当需要中高光谱分辨率时,可见激光通常与1200 gr/mm和1800 gr/mm光栅一起使用。然而,一些样品,如过渡金属二氢化物和石墨烯,可能会使用更高的刻线密度光栅来检测细微的光谱变化。对于UV和可见光激光器,如果用户对PL感兴趣,可以使用较低的刻线密度光栅来获取整个光谱,例如300 gr/mm和600 gr/mm。


对于NIR激光器,推荐的光栅将具有较低的刻线密度,例如300 gr/mm和600 gr/mm。首先,这是光谱范围,如图8所示,具有近红外激光器的高刻线密度光栅所提供的范围非常有限。此外,如上所述,NIR激光器将固有地提供比UV或可见激光更好的光谱分辨率。这意味着使用具有低刻线密度光栅的近红外激光器仍将提供高光谱分辨率。


关于近红外激光器的最后一点需要考虑的是拉曼强度和信噪比(SNR)。随着刻线密度的增加,仪器的拉曼通量将降低。这种效应发生在所有激发波长上;然而,这种效应对于NIR激光器尤其显著。拉曼散射强度与λ-4成正比,其中λ表示激光波长。因此,随着激光波长增加到近红外,拉曼强度将下降。光栅效应和波长效应的复合意味着在NIR中使用高刻线密度光栅对信噪比(SNR)特别有害,并且光谱将需要长的曝光时间。图9中的光谱来自使用785 nm激光和两个相同闪耀波长的光栅的药片。两个光栅之间的SNR差异在图9的红色框中突出显示(归一化后)。在这种情况下,300 gr/mm显然提供了更高的SNR。


图9 上:具有相同曝光时间和两个不同光栅的药片的拉曼光谱。下:归一化光谱放大部分,显示了使用900 gr/mm光栅噪声增加。


表1显示了拉曼光谱中最常用的两种激发波长532nm和785nm的光栅选择的简化摘要。请注意,这些光谱范围用于扩展扫描,最 终光栅选择也将受到前面讨论的因素的影响。


表1 532 nm和785 nm激发的光栅选择


结论

在拉曼光谱中选择光栅需要用户选择优先顺序。确保光栅在激发激光的正确波长下闪耀,这将获得尽可能高的效率。为测试选择必要的刻线密度,这将取决于所需的光谱分辨率和光谱范围。在选择光栅时,还需要考虑其他因素,如拉曼强度、采集时间和信噪比。爱丁堡仪器拉曼光谱仪可以容纳多达五个光栅,用户可以很容易地在其系统中填充一系列刻线密度和闪耀波长的光栅,以满足其应用需求,在分析样品时提供尽可能高的灵活性。


2023-06-26 14:45:03 311 0
颠覆认知 重塑可能 | 2023年赛默飞色谱质谱新品巡展邀您参加



2023-06-25 13:50:30 79 0

4月突出贡献榜

推荐主页

最新话题