仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

解析氮气发生器制氮机系统原理

杭州安研仪器制造股份有限公司 2022-02-16 14:22:32 907  浏览
  • 氮气发生器是一种先进的气体分离技术,以上等进口碳分子筛(CMS)为吸附剂,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。
     
    适用范围
     
    变压吸附空分制氮(简称P.S.A制氮) 是一种先进的气体分离技术,以上等进口碳分子筛(CMS)为吸附剂,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。
     
    应用:
     
    LCMS(液相色谱仪)
     
    GC(气相色谱)
     
    产业 (食物,电子,化工等等)
     
    制氮机系统原理
     
    氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件下得到气相富集物氮气。
     
    氮气发生器
     
    碳分子筛对氧和氮在不同压力下某一时间内吸附量的变化差异曲线:
     
    一段时间后,分子筛对氧的吸附达到平衡,根据碳分子筛在不同压力下对吸附气体的吸附量不同的特性,降低压力使碳分子筛解除对氧的吸附,这一过程为再生。根据再生压力的不同,可分为真空再生和常压再生。常压再生利于分子筛的彻底再生,易于获得高纯度气体。
     
    高纯氮气发生器
     
    变压吸附制氮机(简称PSA制氮机)是按变压吸附技术设计、制造的氮气发生设备。通常使用两吸附塔并联,由全自动控制系统按特定可编程序严格控制时序,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。
     
    碳分子筛(CMS)的动态吸附量和分离系数的性能优
     
    氮气发生器
     
    氮气发生器
     
    劣决定了制氮机的好坏


参与评论

全部评论(0条)

热门问答

解析氮气发生器制氮机系统原理
氮气发生器是一种先进的气体分离技术,以上等进口碳分子筛(CMS)为吸附剂,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。
 
适用范围
 
变压吸附空分制氮(简称P.S.A制氮) 是一种先进的气体分离技术,以上等进口碳分子筛(CMS)为吸附剂,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。
 
应用:
 
LCMS(液相色谱仪)
 
GC(气相色谱)
 
产业 (食物,电子,化工等等)
 
制氮机系统原理
 
氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件下得到气相富集物氮气。
 
氮气发生器
 
碳分子筛对氧和氮在不同压力下某一时间内吸附量的变化差异曲线:
 
一段时间后,分子筛对氧的吸附达到平衡,根据碳分子筛在不同压力下对吸附气体的吸附量不同的特性,降低压力使碳分子筛解除对氧的吸附,这一过程为再生。根据再生压力的不同,可分为真空再生和常压再生。常压再生利于分子筛的彻底再生,易于获得高纯度气体。
 
高纯氮气发生器
 
变压吸附制氮机(简称PSA制氮机)是按变压吸附技术设计、制造的氮气发生设备。通常使用两吸附塔并联,由全自动控制系统按特定可编程序严格控制时序,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。
 
碳分子筛(CMS)的动态吸附量和分离系数的性能优
 
氮气发生器
 
氮气发生器
 
劣决定了制氮机的好坏


2022-02-16 14:22:32 907 0
氮气发生器制氮机的系统原理
氮气发生器根据电催化法进行空气分离的原理制成,其中电解池是利用燃料电池的逆过程设计而成。作为压力稳定且纯净的原料空气进入到电解池中,空气中的氧在阴极被吸附而获得电子,与水作用生成氢氧根离子,并迁移到阳极,*后在阳极处失去电子析出氧气,因此空气中的氧不断被分离。只留下氮气随气路输出。
氮气发生器制氮机的系统原理
氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件下得到气相富集物氮气。
碳分子筛对氧和氮在不同压力下某一时间内吸附量的变化差异曲线:
一段时间后,分子筛对氧的吸附达到平衡,根据碳分子筛在不同压力下对吸附气体的吸附量不同的特性,降低压力使碳分子筛解除对氧的吸附,这一过程为再生。根据再生压力的不同,可分为真空再生和常压再生。常压再生利于分子筛的彻底再生,易于获得高纯度气体。
变压吸附制氮机(简称PSA制氮机)是按变压吸附技术设计、制造的氮气发生设备。通常使用两吸附塔并联,由全自动控制系统按特定可编程序严格控制时序,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。


2022-02-17 14:11:23 734 0
氮气发生器原理

 氮气发生器按原理分为三种,下面为大家仔细讲解下:
  1.电化学法制氮。在氢气电解池的阴极(产氢气一侧)通入高压空气,在催化剂作用下,氢气和氧气形成微观燃料电池,完成氧化还原反应生产水,宏观上表现即为空气中的氧气被除去,剩余氮气。这种方法可以产出高99.995%的氮气,但有几个明显的缺陷:一需用到高浓度氢氧化钾溶液做电解液,这种强碱溶液与气体直接接触,对气体质量有潜在影响,并有随气路输出的可能性;二单位成本高;三反应过程只去除了空气中的氧气,其它杂质气体并没有涉及,并且反应过程对电解池制作技术要求很高,不合适的电解池制作技术会造成氮气纯度数量级的降低。这类氮气发生器作为一种小流量氮气来源,总费用不过几千元,常被用于色谱载气和小容量保护,是一种低成本的解决方案;
  2.膜分离制氮。高压空气通过中空纤维膜组件,氮气分子和氧气分子的扩散速度差别积累,在膜组件输出端形成高纯度的氮气,形成的产品气纯度高可达99%,气体流量>5000ml/min,并且可以累加使用,不影响产品质量,在不考虑其它限制条件的情况下,气体装置可以无限扩充。这种制氮方法膜分离制氮在工业上有不少的应用,在实验室主要用于对气体纯度要求不特别高的吹扫、保护、对氧气的置换等。这类发生器的主要优点是流量大,实验室级别产品一般在50L/min上下,并可随意扩充,同时寿命长,膜组件作为核心部件,在空气源稳定的情况下,寿命可达10年,且维护成本极低;缺点是氮气纯度不能达到高纯级,膜组件目前均为进口,国内不能提供,成本较高,仪器价格也相对高。
  3.PSA变压吸附制氮。利用氮气与其它气体分子在分子筛中的吸附能力差异,形成浓度差异的积累,在分子筛柱末端产出高纯度氮气。同时利用两根分子筛柱,一根吸附的同时引出一部分产品气为另一根解析,实现分子筛在线再生,整体表现即为仪器持续输出高纯氮气。这类发生器可根据需要,调节氮气的纯度和流量,高可生产99.999%的氮气产品,流量可从几百毫升到几十升到几立方每分钟,纯度大小配置灵活,可根据每个需求具体定制,技术难点主要是分子筛柱填装技术,分子筛填装不好,会造成分子筛在气体高低压频繁变化中互相摩擦碰撞粉化,微孔数量减少,分子筛性能急剧降低。

2019-05-29 11:35:46 814 0
氮气发生器原理

氮气发生器原理:
膜分离技术依靠不同气体在膜中溶解和扩散系数的差异而具有不同的渗透速度来实现气体的分离。当混合气体在驱动力一膜两侧压力差作用下,渗透速度相当快的气体如氧气、氢气、氦气、硫化氢、二氧化碳等透过膜后,在膜的渗透侧被富集,而渗透速度相当慢的气体如氮气、氩气、甲烷和一氧化碳等呗滞留在膜的滞留侧被富集从而达到混合气体分离的目的。膜分离制氮机就是根据以上原理。以压缩空气为原料气来提取较高纯度的氮气。
空气分离是购买氮气发生器的替代方案。在空气分离设备中,可以将空气分离为其基本成分。压缩和过滤天然空气,以去除任何杂质。压缩空气被加热和冷却,直到不同的元素达到沸点,然后分离出来。然后这些元素返回到气态,此时它们就可以使用了。与氮气发生器一样,空气分离设备也得益于使用氧气分析仪来观察氧气含量。
氮气发生器的工作原理是分离空气,电解膜的负极侧发生氧化反应,吃掉空气中的氧化性气体,在正极侧还原,空气流过电解池后就只剩下氮气和惰性气体,故国内发生器的纯度大多标有“相对含氧量”,氮气的纯度和空气流速,有效分解面的长度,电解电势的强弱都有关系,这种分离方法也决定了氮气的纯度不可能做的很高。加入电解质的作用就是提高水的导电率,使电化学反应能顺利进行。
发生器对色谱的影响有一点常常被忽略,就是发生器内的开关电源工作事会对电网电压造成的干扰(压缩机的启动和停止也会),所以色谱仪经过稳压电源供电,当然不用稳压电源的用户极少。
对色谱来说,氮气发生器产生了氮气后,还需要脱水、脱氧(加脱水脱氧管),否则会损害ECD检测器。
对质谱来说,国内的氮气发生器都无法达到很高的流量,所以,现在很多人都还使用液氮罐,来支持液质联用需要的氮气流量。
值得提醒的一点是:氮气发生器只能在实验室内或实验室外很近的位置采集空气作为气源,而实验室内空气经常是受到污染的,其中的有机溶剂含量因为实验前处理过程等原因(此外GC的洗针溶剂挥发,液相的流动相挥发)不可避免的超标。

2021-11-26 10:04:29 713 0
膜分离制氮机工作原理

膜分离制氮机工作原理


1、中空纤维膜分离技术是在二十世纪中期发展起来的一种高新技术,近二、三十年来,在世界上得到了飞速的发展,膜分离技术正在为人类带来巨大的利益。薄膜对某些气体组分具有选择性渗透和扩散的特性,因此可以达到气体分离的目的。

2、中空纤维膜实际上是具有相同内外径的微孔管,其结构与列管式换热器相似。纤维束相互独立,在膜组两端用环氧树脂进行密封。数十万根维捆在一起用来提供所需的表面积。

3、在压力作用下,各种气体在中空纤维膜中的吸附、扩散、渗透速率不同,按顺序排列,我们称渗透速率大的气体为”快气”,如氧气、水气;渗透速率小的为”慢气”,如氮气。混合气体透过膜后,”快气”被富 集在低压侧,”慢气”被富集在高压内侧,从而实现了混合气体的分离。

4、空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。

5、同时左吸附塔中碳分子筛吸附的氧气通过左排气阀降压释放回大气当中,此过程称之为解吸。反之左塔吸附时右塔同时也在解吸。
6、为使分子筛中降压释放出的氧气完全排放到大气中,氮气通过一个常开的反吹阀吹扫正在解吸的吸附塔,把塔内的氧气吹出吸附塔。这个过程称之为反吹,它与解吸是同时进行的。

7、右吸结束后,进入均压过程,再切换到左吸过程,一直循环进行下去。


2021-11-15 15:18:24 1033 0
变压吸附制氮机原理

 现今工业发展中,有许多行业已经开始使用氮气来生产或辅助生产产品,应用之广,对此我们有必要了解变压吸附制氮机产生的原理。
    变压吸附制氮机是一种新型气体吸附分离技术。产品纯度高,可在室温和不高的压力下工作,节能经济,设备简单,操作,维护简便,连续循环操作,可达到自动化。变压吸附制氮机是按变压吸附技术设计、制造的氮气发生设备。通常使用两吸附塔并联,由全自动控制系统按特定可编程序严格控制时序,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。变压吸附制氮机的特点风华独到的分子筛装填技术和的总体设计,在制氮浓度和产气量相同时耗电量省,运行成本低。采用目前国际性能好的分子筛,结合独特的气体分布技术和特定的工艺流程,使分子筛发挥大能效,使氮气回收率佳主要是基于碳分子筛对氧和氮的吸附速率不同,碳分子筛优先吸附氧,而氮大部分富集于不吸附相中。碳分子筛本身具有加压时对氧的吸附容量增加,减压时对氧的吸附量减少的特性。利用这种变压吸附的特性,实现氧气和氮气的分离,得到我们所需要的气体组分。由于吸附剂有的吸附容量,当吸附饱和时就需要再生,所以单吸附床的吸附是间歇式的,为保证连续供气,采用双吸附塔并联交替进行吸附,一塔工作一塔再生,连续产生氮气。
    氮气在自然界中分布很广,是空气的主要成份,主要以单质分子氮的形式存在于大气之中,在干燥的空气之中,N2的体积占空气的78.03%,因此,空气是制取氮气的大原料库,它取之不尽,用之不竭。
    变压吸附制氧机由两只或多只吸附塔组成,由计算机控制分别工作于充压、吸附、再生、冲洗等过程,实现连续供气。
    设备包括:压缩空气源及净化系统,变压吸附氧氮分离组件,贮存供气系统,自控系统。 
    应用:本装置能耗小、操作简单、设备投资省。在石化、轻工、冶金、环保、建材、水产养殖、生物技术、医药医疗等领域得到广泛的应用。

2021-12-09 09:57:14 902 0
安研变压吸附制氮机原理

现今工业发展中,有许多行业已经开始使用氮气来生产或辅助生产产品,应用之广,对此我们有必要了解变压吸附制氮机产生的原理。
    变压吸附制氮机是一种新型气体吸附分离技术。产品纯度高,可在室温和不高的压力下工作,节能经济,设备简单,操作,维护简便,连续循环操作,可达到自动化。变压吸附制氮机是按变压吸附技术设计、制造的氮气发生设备。通常使用两吸附塔并联,由全自动控制系统按特定可编程序严格控制时序,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。变压吸附制氮机的特点风华独到的分子筛装填技术和的总体设计,在制氮浓度和产气量相同时耗电量省,运行成本低。采用目前国际性能好的分子筛,结合独特的气体分布技术和特定的工艺流程,使分子筛发挥大能效,使氮气回收率佳主要是基于碳分子筛对氧和氮的吸附速率不同,碳分子筛优先吸附氧,而氮大部分富集于不吸附相中。碳分子筛本身具有加压时对氧的吸附容量增加,减压时对氧的吸附量减少的特性。利用这种变压吸附的特性,实现氧气和氮气的分离,得到我们所需要的气体组分。由于吸附剂有的吸附容量,当吸附饱和时就需要再生,所以单吸附床的吸附是间歇式的,为保证连续供气,采用双吸附塔并联交替进行吸附,一塔工作一塔再生,连续产生氮气。
    氮气在自然界中分布很广,是空气的主要成份,主要以单质分子氮的形式存在于大气之中,在干燥的空气之中,N2的体积占空气的78.03%,因此,空气是制取氮气的大原料库,它取之不尽,用之不竭。
    变压吸附制氧机由两只或多只吸附塔组成,由计算机控制分别工作于充压、吸附、再生、冲洗等过程,实现连续供气。
    设备包括:压缩空气源及净化系统,变压吸附氧氮分离组件,贮存供气系统,自控系统。 
    应用:本装置能耗小、操作简单、设备投资省。在石化、轻工、冶金、环保、建材、水产养殖、生物技术、医药医疗等领域得到广泛的应用。

2022-02-07 14:46:54 411 0
余氯分析仪工作原理解析

余氯分析仪作用及工作原理

  水是我们生命中不可或缺的一种资源,甚至于比粮食还重要。在以前的年代人们都是直接喝生水,但是到了现在人们的科技发达了,污染也变得严重了,水质自然也就受到了影响。有人发现生水中含有大量寄生虫及细菌,于是人们使用氯气消毒,但含氯过高也会对人体产生危害,然后出现了余氯分析仪。小编为大家带来了余氯分析仪的工作原理及作用。

  余氯分析仪可测量水中的余氯和总氯,具有操作简便、灵敏度高等特点。广泛应用于城市供水、食品饮料、环境、化学、制药、热电、造纸、养殖、生物工程、发酵工艺、纺织印染、石油化工、水处理等领域的水质现场快速检测。

  余氯分析仪工作原理

  余氯传感器含有两个测量电极,HOCL 电极和温度电极。HOCL 电极属于克拉克型电流传感器,采用微电子技术制造,用于测量水中次氯酸(HOCl)的浓度。这个传感器由小型的电化学式的三个电极组成,其中一个工作电极(WE),一个反电极(CE) 和一个参考电极(RE)。测量水中的次氯酸(HOCl)的浓度的方法是建立在测量工作电极由于次氯酸浓度变化所产生的电流变化。


2021-03-15 13:27:37 701 0
余氯分析仪工作原理解析

水是我们生命中不可或缺的一种资源,甚至于比粮食还重要。在以前的年代人们都是直接喝生水,但是到了现在人们的科技发达了,污染也变得严重了,水质自然也就受到了影响。有人发现生水中含有大量寄生虫及细菌,于是人们使用氯气消毒,但含氯过高也会对人体产生危害,然后出现了余氯分析仪。小编为大家带来了余氯分析仪的工作原理及作用。

  余氯分析仪可测量水中的余氯和总氯,具有操作简便、灵敏度高等特点。广泛应用于城市供水、食品饮料、环境、化学、制药、热电、造纸、养殖、生物工程、发酵工艺、纺织印染、石油化工、水处理等领域的水质现场快速检测。 

  余氯分析仪工作原理

  余氯传感器含有两个测量电极,HOCL 电极和温度电极。HOCL 电极属于克拉克型电流传感器,采用微电子技术制造,用于测量水中次氯酸(HOCl)的浓度。这个传感器由小型的电化学式的三个电极组成,其中一个工作电极(WE),一个反电极(CE) 和一个参考电极(RE)。测量水中的次氯酸(HOCl)的浓度的方法是建立在测量工作电极由于次氯酸浓度变化所产生的电流变化。


2021-03-24 17:16:51 541 0
氮气发生器常见的三种原理

氮气发生器是一种先进的气体分离技术,它主要应用领域为:航空航天、核电核能、食品医药、石油化工、电子工业、材料工业、国防军和科学实验等领域。

氮气发生器主要由电解系统、压力控制系统、净化系统和显示系统组成。氮气发生器能否很好地应用于气相色谱分析实验,与发生器的原理有很大关系。

氮气发生器的工作原理大致分为三种:1.以电化学分离法和物理吸附法相结合的方式;2.采用中空纤维膜分离;3.采用气相色谱技术用新型合成分子筛分离。

下面我们就具体来介绍一下:

一、电化学法制氮。在氢气电解池的阴极(产氢气一侧)通入高压空气,在催化剂作用下,氢气和氧气形成微观燃料电池,完成氧化还原反应生产水,宏观上表现即为空气中的氧气被除去,剩余氮气。这种方法可以产出高99.995%的氮气,这类氮气发生器作为一种小流量氮气来源,总费用不过几千元,常被用于色谱载气和小容量保护,是一种低成本的解决方案。

二、膜分离制氮。高压空气通过中空纤维膜组件,氮气分子和氧气分子的扩散速度差别积累,在膜组件输出端形成高纯度的氮气,终形成的产品气纯度高可达99%,气体流量>5000ml/min,并且可以累加使用,不影响产品质量,在不考虑其它限制条件的情况下,气体装置可以无限扩充。这种膜分离制氮在工业上有不少的应用,在实验室主要用于对气体纯度要求不特别高的吹扫、保护、对氧气的置换等。这类发生器的主要优点是流量大,实验室级别产品一般在50L/min上下,并可随意扩充,同时寿命长,膜组件作为核心部件,在空气源稳定的情况下,寿命可达10年,且维护成本极低;缺点是氮气纯度不能达到高纯级,膜组件目前均为进口,国内不能提供,成本较高,仪器价格也相对高。我公司生产的氮气发生器中,型号QPN-30L即为膜分离制氮产品,可供对氮气使用量在几升、几十升到几百升每分钟的用户选用;膜分离氮气发生器可以很好的适用液质联用仪的用氮要求。

三、PSA变压吸附制氮。利用氮气与其它气体分子在分子筛中的吸附能力差异,形成浓度差异的积累,在分子筛柱末端产出高纯度氮气。同时利用两根分子筛柱,一根吸附的同时引出一部分产品气为另一根解析,实现分子筛在线再生,整体表现即为仪器持续输出高纯氮气。这类发生器可根据需要,调节氮气的纯度和流量,可生产99.999%的氮气产品,流量可从几百毫升到几十升到几立方每分钟,纯度大小配置灵活,可根据每个需求具体定制, PSA变压吸附技术在工业中应用很广泛,已发展几十年,是很成熟的技术。技术难点主要是分子筛柱填装技术,分子筛填装不好,会造成分子筛在气体高低压频繁变化中互相摩擦碰撞粉化,微孔数量减少,分子筛性能急剧降低。


2022-01-17 15:57:32 623 0
氮气发生器的制氮原理
制氮机系统原理 氮气发生器
氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件下得到气相富集物氮气。
氮气发生器
碳分子筛对氧和氮在不同压力下某一时间内吸附量的变化差异曲线:
一段时间后,分子筛对氧的吸附达到平衡,根据碳分子筛在不同压力下对吸附气体的吸附量不同的特性,降低压力使碳分子筛解除对氧的吸附,这一过程为再生。根据再生压力的不同,可分为真空再生和常压再生。常压再生利于分子筛的再生,易于获得高纯度气体。
高纯氮气发生器
变压吸附制氮机(简称PSA制氮机)是按变压吸附技术设计、制造的氮气发生设备。通常使用两吸附塔并联,由全自动控制系统按特定可编程序严格控制时序,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。


2022-02-15 14:56:50 466 0
氮气发生器的原理及注意事项
氮气发生器的原理及注意事项:氮气发生器的工作原理是分离空气,电解膜的负极侧发生氧化反应,吃掉空气中的氧化性气体,在正极侧还原,空气流过电解池后就只剩下氮气和惰性气体,故国内发生器的纯度大多标有“相对含氧量”,氮气的纯度和空气流速,有效分解面的长度,电解电势的强弱都有关系,这种分离方法也决定了氮气的纯度不可能做的很高。加入电解质的作用就是提高水的导电率,使电化学反应能顺利进行。
 
发生器对色谱的影响有一点常常被忽略,就是发生器内的开关电源工作事会对电网电压造成一定的干扰(压缩机的启动和停止也会),所以色谱仪必须经过稳压电源供电,当然不用稳压电源的用户极少。
 
对色谱来,氮气发生器产生了氮气后,还需要脱水、脱氧(加脱水脱氧管),否则会损害ECD检测器。
 
对质谱来说,国内的氮气发生器都无法达到很高的流量,所以,现在很多人都还使用液氮罐,来支持液质联用需要的氮气流量。氮气发生器
 
值得提醒的一点是:氮气发生器只能在实验室内或实验室外很近的位置采集空气作为气源,而实验室内空气经常是受到污染的,其中的有机溶剂含量因为实验前处理过程等原因(此外GC的洗针溶剂挥发,液相的流动相挥发)不可避免的超标。


2022-02-18 13:13:37 408 0
氮气发生器的原理及注意事项
氮气发生器的原理及注意事项:氮气发生器的工作原理是分离空气,电解膜的负极侧发生氧化反应,吃掉空气中的氧化性气体,在正极侧还原,空气流过电解池后就只剩下氮气和惰性气体,故国内发生器的纯度大多标有“相对含氧量”,氮气的纯度和空气流速,有效分解面的长度,电解电势的强弱都有关系,这种分离方法也决定了氮气的纯度不可能做的很高。加入电解质的作用就是提高水的导电率,使电化学反应能顺利进行。
 
发生器对色谱的影响有一点常常被忽略,就是发生器内的开关电源工作事会对电网电压造成一定的干扰(压缩机的启动和停止也会),所以色谱仪必须经过稳压电源供电,当然不用稳压电源的用户极少。
 
对色谱来,氮气发生器产生了氮气后,还需要脱水、脱氧(加脱水脱氧管),否则会损害ECD检测器。
 
对质谱来说,国内的氮气发生器都无法达到很高的流量,所以,现在很多人都还使用液氮罐,来支持液质联用需要的氮气流量。氮气发生器
 
值得提醒的一点是:氮气发生器只能在实验室内或实验室外很近的位置采集空气作为气源,而实验室内空气经常是受到污染的,其中的有机溶剂含量因为实验前处理过程等原因(此外GC的洗针溶剂挥发,液相的流动相挥发)不可避免的超标。


2022-02-21 14:04:01 400 0
液质联用专用氮气发生器的主要系统

        液质联用的时候要用到氮气,氮气的供给通常有钢瓶、液氮罐和氮气发生器,氮气钢瓶的缺点:氮气纯度低,含有微生物、热原等有害杂质,液氮罐纯度相对较高,罐体装备和管道配置较好,后期杂质影响较小,然而对于检测样本少,就会使成本,而液质联用氮气发生器可以连续供给洁净、干燥的高纯氮气。

       液质联用专用氮气发生器的工作原理是分离空气,电解膜的负极侧发生氧化反应,吃掉空气中的氧化性气体,在正极侧还原,空气流过电解池后就只剩下氮气和惰性气体,氮气的纯度和空气流速,有效分解面的长度,电解电势的强弱都有关系,这种分离方法也决定了氮气的纯度不可能做的很高。加入电解质的作用就是提高水的导电率,使电化学反应能顺利进行。

       液质联用专用氮气发生器包括氮气缓冲系统、氮氧分离系统、空气储罐系统等。在这些系统中,氮氧分离系统是制氮设备的主要部件,由两个交替工作的吸附塔和气动阀、节流阀、消音器等组成。根据碳分子筛对空气中主要成分氧气和氮气的吸附速率不同,在液质联用专用氮气发生器加压吸附和降压脱附过程中实现氮氧分离,而加压吸附与降压脱附过程由可编程控制器按一定程序控制电磁阀,并由电磁阀控制相应的气动阀自动运行。

       氮气缓冲系统:其主要作用在于均衡从氮氧分离系统分离出来的氮气的压力和纯度,保证连续供给氮气。同时,在吸附塔进行生到吸附切换时,它将存储的部分合格氮气回充吸附塔保护床层,另外也有帮助吸附塔升压的作用。该系统由流量计、缓冲罐、粉尘过滤器、节流阀、调压阀、防护阀等组成。
  氧氮分离系统:其主体是两个装满碳分子筛的吸附塔,当洁净压缩空气进入一吸附塔时,O2、CO2和微量H2O被碳分子筛吸附,氮气从出口端输出。当一塔在吸附制氮时,另一塔通过减压使吸附在分子筛中的O2、CO2和H2O从微孔中排出,实现分子筛的生脱附。两塔交替进行吸附和生,连续输出氮气,该系统由塔内装填的碳分子筛、吸附塔、气动阀、节流阀、消声器、压紧气缸、压力表等组成。
  空气储罐系统:保证氧氮分离系统用气平稳,在氧氮分离系统切换时防止瞬间气流流速过快,影响空气净化效果,提高进入吸附器的压缩空气品质,有利于延长分子筛的寿命。该系统由空气储罐、截止阀、防护阀、球阀、压力表等组成。


2019-11-14 14:55:57 642 0
DLP投影机的原理解析
 
2018-12-09 09:35:25 429 0
解析煤自燃的原理?
 
2016-12-14 23:40:24 372 1
溶解氧分析仪工作原理解析

溶解氧分析仪工作原理解析

  水中的氧含量可充分显示水自净的程度。对于使用活化污泥的生物处理厂来说,了解曝气池和氧化沟的氧含量非常重要,污水中溶氧增加,会促进除厌氧微生物以外的生物活动,因而能去除挥发性物质和易于自然氧化的离子,使污水得到净化。 

  测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量。水中溶氧量一般采用电化学法测量。

  氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的溶解度与其分压成正比。


2020-12-31 10:47:15 909 0

2月突出贡献榜

推荐主页

最新话题