透射电镜制样技术
透射电镜是一种综合性大型分析仪器,在现代科学技术的研究开发工作中被广泛地使用。透射电镜工作原理是以电子束透过样品经过聚焦与放大后所产生的物像,投射到荧光屏上或照相底片上进行观察。
透射电镜样品制备要求
透射电镜样品制备基本要求:①尽可能保持材料的结构和某些化学成分生活时的状态;②材料的厚度一般不宜超过1000埃。组织和细胞,必须制成薄切片以获得较好的分辨率和足够的反差;③采用各种手段,如电子染色、投影、负染色等来提高生物样品散射电子的能力,以获得反差较好的图像。
透射电镜样品制备的方法随生物材料的类型以及研究目的而各有不同。对生物组织和细胞等,一般多用超薄切片技术,将大尺寸材料制成适当大小的超薄切片,并且利用电子染色、细胞化学、免疫标记及放射自显影等方法显示各种超微结构、各种化学物质的部位及其变化。对生物大分子(蛋白质、核酸)、细菌、病毒和分离的细胞器等颗粒材料,常用投影、负染色等技术以提高反差,显示颗粒的形态和微细结构。此外还有以冷冻固定为基础的冷冻断裂、冰冻蚀刻、冷冻置换、冷冻干燥等技术。
超薄切片技术
将小块生物材料,用液态树脂单体浸透和包埋,并固化成塑料块,后用超薄切片机切成厚度为500埃左右,甚至只有50埃的超薄切片。超薄切片的制备程序与光学显微镜的切片程序类似,但各步骤的要求以及所使用的试剂和操作方法有很大差别。
固定技术
选用适宜的物理或化学的方法迅速杀死组织和细胞,力求保持组织和细胞的正常结构,并使其中各种物质的变化尽可能减小。固定能提高细胞承受包埋、切片、染色以及透射电镜电子束轰击的能力。主要固定方法有:
①快速冷冻,用致冷剂(如液氮、液体氟利昂、液体丙烷等)或其他方法使生物材料急剧冷冻,使组织和细胞中的水只能冻结成体积极小的冰晶甚至无定形的冰玻璃态。这样,细胞结构不致被冰晶破坏,生物大分子可保持天然构型,酶及抗原等能保存其生物活性,可溶性化学成分(如小分子有机物和无机离子)也不致流失或移位。用冷冻的组织块,可进行切片、冷冻断裂、冷冻干燥和冷冻置换等处理。用此法固定的样品既可提供组织、细胞结构的形态学信息,又可提供相关的细胞化学信息。
②化学固定,固定剂有凝聚型和非凝聚型两种,前者如光学显微术中常用的乙醇、二氯 化汞等,此法常使大多数蛋白质凝聚成固体,结构发生重大变化,常导致细胞的细微结构出现畸变。非凝聚型固定剂包括戊二醛、丙烯 醛和甲醛等醛类固定剂和四氧 化锇,四氧化钼等,适用于电子显微。它们对蛋白质有较强的交联作用,可以稳定大部分蛋白质而不使之凝聚,避免了过分的结构畸变。它们与细胞蛋白质有较强的化学亲和力,固定处理后,固定剂成为被固定的蛋白质的一部分。如用含有重金属元素的固定剂四氧 化锇(也是良好的电子染色剂)进行固定,因为锇与蛋白质结合,增强了散射电子的能力,提高了细胞结构的反差。
固定操作方法通常是先将材料切成1立方毫米左右小块,浸在固定液中,保持一定温度(通常为4℃),进行一定时间的固定反应。取材操作要以尽可能快的速度进行,以减少组织自溶作用造成的结构破坏。对某些难以固定的特殊组织,如脑、脊髓等,Z好使用血管灌注方法固定,即通过血管向组织内灌注固定液,使固定液在组织发生缺氧症或解剖造成损伤之前,快速而均匀地渗透到组织的所有部分。灌注固定的效果比浸没固定好得多。
脱水技术
化学固定后,将材料浸于乙醇、丙酮等有机溶剂中以除去组织的游离水。为避免组织收缩,所用溶剂需从低浓度逐步提高到纯有机溶剂,逐级脱水。
浸透技术
脱水之后,用适当的树脂单体与硬化剂的混合物即包埋剂,逐步替换组织块中的脱水剂,直至树脂均匀地浸透到细胞结构的一切空隙中。
包埋技术
浸透之后,将组织块放于模具中,注入树脂单体与硬化剂等混合物,通过加热等方法使树脂聚合成坚硬的固体。用作包埋剂的树脂有甲基丙烯酸酯、聚酯和环氧树脂等。Z广泛使用的是某些类型的环氧树脂,如618树脂、Epon812、Araldite和Spurr等商品树脂。它们具有良好的维持样品特性、低收缩率和较强的耐电子轰击能力等优点。
切片技术
制备超薄切片要使用特制超薄切片机(大多是根据精密机械推进或金属热膨胀推进原理制成)和特殊的切片刀(用断裂的玻璃板制成的玻璃刀或用天然金刚石研磨而成的金刚石刀)。先将树脂包埋块中含有生物材料的部分,用刀片在立体显微镜下修整成细小的金字塔形,再用超薄切片机切成厚度适中(500埃左右)的超薄片,切片应依次相互联接形成切片带。切片带漂浮于装在切片机上的水槽中的水面上。
通过装置在切片机上的解剖显微镜,监控切片过程。用荧光灯照射水面上的切片,并根据由此产生的干涉光颜色来判断切片的实际厚度。
切片通常用敷有薄的支持膜的特制金属载网,从水面上捞取。快速冷冻固定的生物材料,可用冷冻超薄切片装置制成切片。用醛类或冷冻方法固定的组织,可通过超薄切片术与生物化学技术、免疫技术等结合使用,进行超微结构水平上的蛋白质、核酸、酶及抗原等生物活性物质的定位甚至定量研究。这就是透射电镜细胞化学技术和透射电镜免疫细胞化学技术。
染色技术
透射电镜主要是依赖散射电子成像,为了增强细胞结构的电子反差,需要对切片进行染色。染色是依据各种细胞结构与染色剂(重金属盐)结合的选择性,而形成不同的对电子散射能力,从而产生借以区别各种结构的反差。
电子染色方法分块染色和切片染色两种:①块染色法,在脱水剂中加入染色剂,在脱水过程中对组织块进行电子染色。②切片染色法,即将透射电镜载有切片的金属载网漂浮或浸没在染色液中染色。也可使用有微处理机控制的染色机进行自动化染色。一般切片染色所使用的染色剂为金属铀盐和铅盐的双重染色。为显示某种特殊结构,则可采用与该结构有特异性结合的选择性染色剂。
冷冻置换技术
用有机溶剂(如丙酮、乙 醚等)在低温条件下(通常,-80~-90℃),缓慢地置换冷冻固定的小块组织中的冰(“惰性脱水”),这样可减少常规方法脱水过程中有机溶剂对组织中化学组分的抽取。然后再按常规方法进行树脂包埋、超薄切片和染色等。用冷冻置换法,可以很好地保存快速变化过程中物质的状态和非常脆弱的超微结构以及细胞内某些化学组分。
透射电镜放射自显影技术
用超薄切片术与放射性同位素标记技术相结合的透射电镜放射自显影术(见同位素技术)可获得同位素标记的化合物在组织细胞内存在部位,以及在代谢过程中物质的合成、分解、转运及分泌的信息。
负染色技术
研究以蛋白质为主要成分的颗粒状材料的Z常用方法。以某些在电子束轰击下稳定而又不与蛋白质相结合的重金属盐类作为负染色剂,使之在支持膜上将颗粒材料包围,形成具有高电子散射能力的背景,衬托出低电子散射能力的颗粒的形态细节。其所成的电子显微像的反差与常规电子染色相反,即暗的背景和亮的颗粒形态的所谓阴性反差。负染色方法简便,所获得的颗粒的电子显微图像反差强,分辨率也高于超薄切片,可广泛用于透射电镜研究蛋白质分子、细菌鞭毛、蛋白质结晶,以及生物膜及分离的细胞的细微结构,特别适用于蛋白质大分子及病毒颗粒结构的三维重建研究。
用液滴法或喷雾法将颗粒材料的悬液加在载网的支持膜上,然后滴加负染色剂溶液。或将颗粒的悬液与负染色剂按一定浓度混合滴加或喷撒到支持膜上,吸去多余液体,待干燥后,即可用透射电镜观察。样品颗粒在支持膜上的均匀分散是成功的关键之一。染色剂溶液的pH则是成功的另一关键。一般染色剂的pH应在中性偏酸范围(pH5~7),但对不同种类的颗粒材料和染色剂,Z适pH也不尽相同。
投影在真空蒸发器的高真空腔中,加热某些金属至熔化后,金属以细小颗粒沿直线方向蒸发出来。当金属微粒以一定入射角喷镀在载有颗粒材料的载网支持膜表面上时,颗粒向蒸发源的一面即被镀上一层金属薄膜,而背蒸发源的一面及附近区域形成无金属沉积的“阴影”,并且由于各部位散射电子能力存在着差别,这样就能构成具有强烈反差和立体感的电子显微图像。常用于投影的蒸发材料,有金、铬、铂、钯以及铂-铱、铂-钯、铂-碳等金属或合金。此外,还可利用电子枪投影装置使钨、钽等高熔点金属以极微细颗粒蒸发,从而获得高分辨率投影。
蛋白质展膜技术
用透射电镜研究核酸分子常用的方法。某些碱性球蛋白,如细胞色素c,可以在低浓度盐溶液或蒸馏水表面展成单分子层,在展开过程中,能为蛋白质的碱性氨基酸侧链基团所吸附的、带负电荷的核酸分子同时展开成完整的线状分子。然后,用带有支持膜(有机膜或碳膜)的载网捞起这些蛋白质核酸展膜,并用染色或金属投影法提高核酸分子的反差,可在透射电镜下直接观察核酸分子的形态、DNA的双螺旋结构,并可通过分子长度的测量来计算核酸分子量。
冷冻断裂和冰冻蚀刻技术
研究细胞超微结构,特别是生物膜结构的一种独特的样品制备技术。利用快速冷冻方法固定的生物组织块具有刚性和脆性。在对其施加外力后,组织即在结构上结合Z薄弱的部位发生“脆性断裂”,这就是“冷冻断裂”。
对于生物膜,断裂沿膜内部疏水区发生,从而暴露出膜内部结构。利用投影和复型技术,制备断裂面的复型,然后将组织腐蚀掉,并用载网捞起复型膜,就可用透射电镜来研究组织断裂表面所显示的细胞的或生物膜内部超微结构。在高于10^-5毫米汞柱真空度和-100℃温度下,冷冻组织的断裂表面上的冰升华为水蒸汽,而使原表面高度下降,即谓之“冰冻蚀刻”。由于组织各部分结构的含水量不同,冰的升华造成各部分结构的表面高度下降程度有差异,因此冰冻蚀刻的断裂表面的投影、复型所显示的断裂表面形态具有很强的立体感。
冷冻断裂和冰冻蚀刻技术,为细胞超微结构,特别是关于细胞联接、细胞融合、细胞分化以及生物膜的通透性的研究提供了许多重要信息。也为流行的生物膜结构模型,即“流动镶嵌模型”的研究提供了有利的证据。
全部评论(0条)
推荐阅读
-
- 透射电镜制样技术
- 透射电镜是一种综合性大型分析仪器,在现代科学技术的研究开发工作中被广泛地使用。透射电镜工作原理是以电子束透过样品经过聚焦与放大后所产生的物像,投射到荧光屏上或照相底片上进行观察。
-
- 透射电镜制样
- 透射电镜全称透射电子显微镜,是一种高分辨率、高放大倍数的显微镜,是材料科学研究的重要手段,能提供极微细材料的组织结构、晶体结构和化学成分等方面的信息。
-
- 透射电镜制样
- 透射电镜,全称透射电子显微镜。透射电镜的应用,已将静止的形态学观察与动态的功能研究相结合。透射电镜技术的发展不仅表现在仪器本身性能的高度完善和种类的增多,而且还反映在与其相应的各种样品制备和应用技术。
-
- icp-oes制样
- ICP-OES广泛应用于环境监测、食品安全、材料检测等领域,其高效、准确、同时可以进行多元素同时测定的优势,使得它在分析检测中占有重要地位。而制样过程则是ICP-OES分析中至关重要的一步,合理的制样可以大大提高分析结果的精度。本篇文章将深入探讨ICP-OES制样的重要性,分析制样过程中的关键步骤和注意事项,帮助读者更好地理解如何优化这一过程,从而提高ICP-OES分析的质量。
-
- 透射电镜技术
- 透射电镜是观察和分析材料的形貌、组织和结构的有效工具。透射电镜用聚焦电子束作照明源,使用对电子束透明的薄膜试样,以透过试样的透射电子束或衍射电子束所形成的图像来分析试样内部的显微组织结构。
-
- 激光共聚焦显微镜制样标准
- 为了获得高质量的显微图像,制样是其中至关重要的一环。本文将深入探讨激光共聚焦显微镜的制样标准,帮助用户理解如何通过合适的样品准备方法提升显微成像的效果。通过对样品制备的严格要求,确保实验数据的准确性和可重复性,是实现高分辨率图像和可靠分析的基础。
-
- 扫描电镜制样方法
- 扫描电镜全称扫描电子显微镜,扫描电镜制样方法直接关系到电子显微图像的观察效果和对图像的正确解释。如果制备不出适合扫描电镜特定观察条件的样品,即使扫描电镜性能再好也不会得到好的观察效果。
-
- 扫描电镜制样方法
- 扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观形貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的基本部件有透镜系统、电子枪、电子收集器、观察和记录影像的阴极射线管等。
-
- 扫描电镜生物制样
- 生物样品具有含水量高、质地柔软、导电性差、容易变形等特点,因此采用扫描电镜观察生物样品时,必须对样品进行必要的处理。
-
- 透射电镜技术进展
- 透射电镜是一种现代综合性大型分析仪器,在现代科学技术的研究开发工作中被广泛地使用。透射电镜是以电子束透过样品经过聚焦与放大后所产生的物像,投射到荧光屏上或照相底片上进行观察。
-
- 二次离子质谱仪的制样
- 在使用SIMS进行分析前,制样过程显得尤为关键,因为样品的制备质量直接影响分析结果的准确性与可靠性。本文将详细探讨二次离子质谱仪的制样方法,介绍如何通过优化制样过程来提高分析结果的质量,为科学研究提供的数据支持。
-
- 二次飞行离子质谱仪制样
- 通过对样品表面的离子轰击,SIMS能够获得深入的元素和分子信息。本文将介绍二次飞行离子质谱仪的制样过程,以及如何通过合适的制样方法,确保测试结果的准确性和可靠性。
-
- 红外碳硫分析仪怎么制样
- 其精确度高、操作简便的特点使其成为实验室中常见的分析工具。为了确保测试结果的准确性,样品的制备过程显得尤为重要。本篇文章将深入探讨如何正确进行样品制备,以便在使用红外碳硫分析仪时能够获得精确的测试数据。
-
- 光谱分析仪测金属元素制样
- 随着工业化生产对金属材料品质要求的提升,精确的金属成分分析成为确保产品质量的关键环节。制样过程作为光谱分析的基础,不仅直接影响到分析结果的准确性和可靠性,而且对于优化金属加工工艺、提高生产效率也具有深远的影响。本文将详细探讨光谱分析仪在金属元素测定中制样的具体方法和注意事项,以帮助相关行业提升分析技术水平。
-
- 小角x射线散射仪粉末制样
- 特别是在粉末样品的分析中,准确的样品制备是确保实验结果可靠性的关键因素之一。本文将探讨小角X射线散射仪中的粉末样品制备方法,分析如何通过优化制备步骤,提高实验的准确性和重复性。
-
- 透射电镜基本原理:深入解析显微成像技术
- 透射电镜作为一种高精度的科研仪器,广泛应用于材料学、生命科学、纳米技术等领域。其高分辨率的成像能力使其成为科研工作者进行微观结构分析的重要工具。
-
- 热解吸仪热解吸进样技术
- 热解吸仪为在一定的气流和温度下解析(脱附)出吸附管中的吸附物质的一种装置。对于脱附沸点400摄氏度以内的热稳定性物非常适应。例如室内环境污染控制检测中分析室内空气总挥发性有机物。
-
- 缺口制样机操作指南:提升制样效率与精度
- 本文将详细介绍缺口制样机的操作流程、使用技巧以及如何通过科学的操作提高制样效率与精度。正确的操作不仅能确保样品的一致性,还能有效延长设备的使用寿命。
-
- 缺口制样机校准方法:确保制样与稳定性能
- 本文将深入探讨缺口制样机的校准方法,从而帮助操作人员理解并掌握如何保持设备精度和延长其使用寿命,提升测试结果的可靠性和一致性。
-
- 透射电镜使用:探索微观世界的高精度技术
- 透射电镜作为一种高精度的科研仪器,广泛应用于材料学、生命科学、纳米技术等领域。其高分辨率的成像能力使其成为科研工作者进行微观结构分析的重要工具。
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论