变压器纸耐电压试验仪闭环控制系统计算机或触摸屏界面预设升压速率、电压阈值等参数,动态调整升压曲线避免阶梯式波动,保证测试精度≤2%。测试模式差异破坏性击穿测试通过持续升压直接测定材料介电强度极限,适用于研发阶段的材料性能评估及质量抽检。非破坏性耐压测试施加固定阈值电压(如2倍额定电压+1000V)并保持设定时长(通常60秒),监测泄漏电流是否超标以验证短期绝缘稳定性,多用于生产线终检。

变压器纸耐电压试验仪安全防护机制实时保护系统集成过流保护、短路保护、漏电保护等多重机制,触发异常时自动切断高压输出并启动放电程序。物理隔离设计配备屏蔽罩与机械联锁装置,防止操作人员接触高压区域;试验舱门开启时自动断电,规避电弧伤害风险。
产品型号:BDJC-10KV、BDJC-50KV、BJC-100KV
产品品牌:北京北广精仪
控制方式:计算机控制
符合标准:GB/T1408、ASTM D149、IEC60243-1等
适用材料:橡胶、塑料、薄膜、陶瓷、玻璃、漆膜、树脂、电线电缆、绝缘油等绝缘材料
测试项目:击穿电压测试、介电强度测试、电气强度测试、耐电压击穿强度测试等
试验电压:10KV、20KV、50KV、100KV、150KV等
电压精度:≤1%
适用材料:绝缘材料
升压速率:10V/S-5KV/S
试验方式:交流/直流、耐压、击穿、梯度升压
控制系统:PLC控制升压
核心部件:采用进口配件
试验介质:绝缘油、空气
显示方式:曲线显示、数据打印
其它特点:无线蓝牙控制
设备组成:主机、计算机、电极
电极规格:25mm、75mm、6mm
电器容量:3KVA、5KVA、10KVA
耐压时间:0-8H
安全保护:九级安全保护
质保日期:三年、终身维护。
培训方式:工程师上门培训安装
出据证书:514所、304所、科学研究院等单位均可

工作原理流程
参数设置(升压速率/电压上限) → 2. 样品安装与电极校准 → 3. 启动升压并实时监测 → 4. 击穿信号捕获 → 5. 数据记录与分析。
电压击穿试验仪技术解析
一、核心功能与用途
绝缘材料性能评估
测试固体绝缘材料(塑料、薄膜、陶瓷、树脂等)在工频或直流电压下的击穿强度(kV/mm)及耐压时间,为电力设备、新能源等领域提供关键数据支持。
检测材料微观缺陷(如气泡、裂纹),预防因绝缘失效导致的设备故障。
多领域应用
电力行业:评估高压电缆、变压器绝缘子的耐压性能。
新能源:测试电池隔膜、电机绝缘材料的介电特性。
科研:研究新型绝缘材料的失效机理及优化工艺。
二、关键技术参数
电压范围
输出范围:AC/DC 0-50kV连续可调,BDJC-100KV可达100kV。
升压速率:100-3000V/s无极调速,满足不同材料的梯度测试需求。
精度与安全
电压测量误差≤2%,配备三级联锁防护(机械/电子/物理隔离)。
过流保护、漏电保护及直流试验自动放电功能,确保操作安全。
智能控制
动态绘制试验曲线,支持数据自动存储及EXCEL/WORD导出。
闭环控制系统实时监测升压曲线,避免阶梯式波动。
三、标准体系与测试方法
中国标准
GB/T 1408.1-2006、GB/T 1695-2005等,明确试样预处理、电极规格及油温控制范围(如25±2℃)。
国际标准对比
ASTM D149与IEC 60243在升压方式、测试次数等存在差异(如ASTM允许步进升压,IEC仅认可连续升压)。
测试模式
连续升压:直接测量击穿电压临界值。
耐压测试:保持规定电压时长验证材料稳定性。
四、操作规范与注意事项
环境与样品要求
环境湿度≤80%,试样需洁净干燥并严格防尘避光。
液体介质(如变压器油)需控制温度波动±2℃。
安全操作
至少两人协作,禁止直接接触电极及油杯内部。
设备需独立接地,防止电磁干扰导致数据异常。
仪器校准
采用四级校准体系(包括温度补偿设计),确保高压线圈稳定输出。
五、选型与发展趋势
设备选型要点
先支持多标准(GB、IEC、ASTM)的智能化型号BDJC系列。
关注升压速率调节精度及数据采集抗干扰能力。
技术升级方向
集成AI算法优化测试效率,开发高温/低温环境适配模块。
增强远程监控功能,满足工业4.0自动化测试需求。
绝缘强度与击穿电压之间有什么关系?
一、定义与基本关系
击穿电压
定义:在强电场作用下,绝缘材料失去绝缘性能而变成导体时的临界电压值。
单位:千伏(kV)或伏特(V)。
绝缘强度(击穿场强)
定义:单位厚度的绝缘材料能承受的电场强度,反映材料本身的耐电能力。
单位:千伏/毫米(kV/mm)或兆伏/米(MV/m)。
二、区别与联系
物理意义差异
击穿电压:表征材料在特定厚度下的耐压极限,与材料厚度直接相关。
绝缘强度:反映材料单位厚度的耐电场能力,是材料本身的固有属性。
应用场景差异
绝缘强度:用于横向对比不同材料的绝缘性能(如塑料、陶瓷等)。
击穿电压:指导电气设备设计时确定绝缘层厚度或安全电压阈值。
影响因素
绝缘强度:主要由材料组成、微观结构及温度决定(如高温下易发生热击穿)。
击穿电压:除材料本身外,还受厚度、环境温湿度及电压类型(交流/直流)影响。
三、典型应用
材料筛选:高绝缘强度材料(如E=30kV/mm的陶瓷)适用于高压变压器绝缘层。
设备设计:通过击穿电压公式反推绝缘层小厚度(如电缆绝缘层设计)。
安全评估:结合两者关系验证电力设备长期运行的可靠性(如光伏组件封装材料测试)
总结
绝缘强度是材料抵抗电场破坏的固有属性,而击穿电压是其厚度相关的耐压表现。两者通过数学公式关联,共同为绝缘材料性能评估和电气设备设计提供核心依据
击穿电压测试方法主要包括以下几种类型及操作流程:
一、测试方法分类
工频交流击穿测试
原理:施加工频交流电压并逐步升压至试样击穿,记录击穿电压值。
步骤:
样品安装于电极间(如漆包线缠绕于圆柱形电极)。
设置升压速率(如100-500V/s)。
持续升压直至击穿,记录击穿电压。
直流击穿测试
原理:采用直流电压评估材料在稳定电场下的绝缘性能。
步骤:
连接直流高压电源,升压速率较慢(如50-200V/s)。
观察电流变化,记录击穿瞬间电压值。
脉冲击穿测试
原理:模拟瞬态过电压(如雷击),测试材料在高频或脉冲条件下的绝缘强度。
步骤:
施加标准波形脉冲电压(如雷电冲击波形)。
多次冲击后记录击穿电压。
局部放电与热击穿测试
局部放电:监测绝缘材料内部放电信号,评估潜在缺陷。
热击穿:结合升温与升压,测试材料在高温下的耐压能力。
二、通用操作流程
准备阶段
检查设备连接线、电极接触状态及样品完整性。
设置环境条件(温度、湿度)并穿戴防护装备(绝缘手套、护目镜)。
设备连接与参数设置
高压电源连接至电极,串联电压/电流表。
选择升压模式(匀速或阶梯升压)及量程。
测试执行
启动升压系统,实时监测电压/电流变化。
击穿后自动切断电源并记录数据,重复测试取平均值。
安全防护
设备配置过流保护、门联锁及放电装置。
直流测试后需手动放电以避免触电。
三、测试标准与设备配置
适用标准
国际标准:ASTM D149(固体材料介电击穿测试)。
国内标准:GB/T 1408.1-2006(绝缘材料电气强度试验)。
设备核心参数
电压范围:覆盖交流/直流0-150kV(如ZJC-150E型号)。
升压速率:0.05-5kV/s可调。
电极设计:圆形电极(直径25/75mm)减少边缘放电影响。
四、典型应用场景
光伏材料:EVA封装材料需验证工频/直流击穿强度。
漆包线:通过交流或直流测试评估绝缘层极限电压。
电缆与变压器:耐压试验确保设备长期运行稳定性。
以上方法通过多维度评估材料绝缘性能,确保电气设备的安全性与合规性
产品安全合规性测试中的击穿电压检测
一、测试标准与规范
国际标准
IEC 60243-1:定义高压试验的基本术语、试验条件及程序,适用于电气设备和材料的击穿电压测试。
ASTM D149:针对固体绝缘材料的电气强度测试,包括击穿电压测定。
国内标准
GB/T 1408.1-2006:规定绝缘材料电气强度试验方法,明确工频/直流击穿测试流程。
GB/T 4074.5:漆包线击穿电压测试的专项标准,要求验证绝缘层极限耐压性能。
二、测试流程与操作
样品准备
清洁并干燥样品表面,避免污染物或潮湿影响测试结果。
根据材料类型(如漆包线、云母片、碳化硅)选择电极夹具。
设备配置
使用电压击穿试验仪(如BDJC-50KV型号),支持交流/直流0-150kV测试范围。
串联电压/电流表监测实时数据,配置过流保护及门联锁装置保障安全。
参数设置与执行
按标准设置升压速率(如100-500V/s)、电压类型(工频/直流)及环境温湿度。
逐步升压至击穿,记录临界电压值并重复测试取平均值。
三、合规性验证目标
安全性能验证
确定绝缘材料的击穿场强(单位厚度耐压能力),防止设备因绝缘失效引发火灾或短路。
检测潜在缺陷(如漆膜针孔、杂质),确保产品无局部绝缘薄弱点。
标准符合性
验证是否符合IEC 60851-5(漆包线)、UL 1449(电气设备)等行业准入要求。
通过加速老化测试(高温/高湿)模拟长期使用场景,评估材料耐久性。
四、典型应用场景
漆包线:测试绝缘层极限电压(如10kV以上),优化涂漆工艺并筛选合格产品。
云母片:通过工频击穿试验(200kV)验证高温环境下的绝缘可靠性。
碳化硅(SiC):评估其在高压电力电子设备中的击穿电压稳定性。
五、安全防护措施
操作规范:穿戴绝缘手套、护目镜,保持安全距离防止电弧伤害。
设备维护:定期校准仪器,测试后手动放电避免残余电压风险。
应急处理:配置紧急停机按钮及急救设备,确保突发状况可快速响应。
六、测试报告与改进
记录击穿电压、击穿位置及环境参数,分析数据是否符合设计预期。
通过对比不同工艺或材料的测试结果,优化生产流程并推动技术创新。
通过上述流程,击穿电压测试可有效保障产品安全合规性,同时为电气设备长期稳定运行提供科学依据
电压击穿试验仪、介电强度试验仪(耐压测试仪)在使用过程中的注意事项:
在使用电压击穿试验仪/介电强度试验仪(耐压测试仪)进行硫化橡胶或其他绝缘材料的击穿强度测试时,需严格遵守安全规范并确保测试结果的准确性。以下是关键注意事项的详细说明:
一、安全防护措施
1. 高压危险防护
操作人员必须接受高压设备安全培训,熟悉设备紧急停机按钮和断电流程。
测试区域设置警示标识(如“高压危险”),禁止无关人员靠近。
设备必须可靠接地(接地电阻≤4Ω),避免漏电或静电积累。
2. 防护装置
确保试验仪配备安全联锁装置(如防护罩未闭合时自动断电)。
使用绝缘操作工具(如高压绝缘手套、绝缘垫)辅助操作。
3. 个人防护装备(PPE)
穿戴绝缘手套、护目镜及防护服,避免电弧或击穿飞溅物伤害。
二、设备设置与校准
1. 电压参数设置
升压速率:根据标准(如ASTM D149)选择合适速率(通常为500 V/s或100 V/s)。
初始电压:从0开始逐步升压,避免瞬间高压冲击样品。
2. 电极选择与安装
使用标准电极(如球形电极或圆柱形电极,符合IEC 60243要求)。
确保电极表面平整、清洁,无氧化或污渍(可用酒精擦拭)。
3. 校准与验证
定期校准设备(电压表、电流表精度需符合标准要求)。
使用已知击穿电压的标准样品验证设备准确性。
三、样品处理与测试条件
1. 样品制备
样品厚度均匀(通常1-3 mm),无气泡、杂质或机械损伤。
表面清洁干燥(避免手汗、灰尘或油脂污染)。
2. 环境控制
温度:23±2℃,湿度:50±5% RH(参考标准要求)。
避免电磁干扰(远离大功率设备或高频信号源)。
3. 样品固定与接触
确保样品与电极紧密接触,避免空气间隙导致局部放电。
对软质橡胶样品可施加轻微压力(如1 N)保证贴合。
四、测试过程操作规范
1. 逐步升压
缓慢升高电压,避免电压突变导致误判击穿点。
实时监测电流(击穿瞬间电流骤升)。
2. 击穿判定
击穿标准:电流超过设定阈值(如5 mA)或样品发生碳化、穿孔。
同一样品不同位置至少测试3次,取平均值(剔除异常值)。
3. 数据记录
记录击穿电压、样品厚度、环境条件及击穿形态(如沿面放电或贯穿击穿)。
五、测试后处理与维护
1. 残余电荷释放
嗯,用户问的是电压击穿试验仪如何选型。首先,我需要理解用户的需求是什么。可能他们是电气工程师、质量检测人员或者是学生做研究?不管怎样,选型这种设备需要考虑多个因素。
首先,电压击穿试验仪主要用于测试绝缘材料的耐压性能,确定其击穿电压和介电强度。不同的应用场景可能需要不同的参数,比如测试电压范围、样品类型、测试标准等等。用户可能想知道具体的选型步骤或者关键参数。
接下来,我要回忆一下电压击穿试验仪的基本构成和常见参数。通常这类仪器分为交流、直流和冲击高压三种类型。不同类型的试验适用于不同的材料和标准。比如,交流试验常用于电缆绝缘,而直流可能用于电机绕组。用户可能需要根据他们的测试对象来选择类型。
然后,测试电压范围是关键参数之一。不同的材料有不同的耐压要求,比如橡胶、塑料、陶瓷等。用户需要确定他们的样品可能承受的电压,从而选择合适量程的设备。如果电压范围不够,可能无法准确测试高耐压材料,反之则会浪费资源。
电气绝缘用柑脂基反应复合物 第2部分:试验方法 IEC 60674-2: 1988 电气用塑料薄膜 第2部分z试验方法电气击穿试样承受电应力作用时,其绝缘性能严重损失,由此引起的试验田路电流促使相应的回路断路器动作.注:击穿通常是由试中羊和电极周围的气体或液体媒质中的局部放电引起,并使得较小电极(或等径两电极)边缘的试样遭到破坏闪络试样和电极周围的气体或液体媒质承受电应力作用时,其绝缘性能损失,由此引起的试验回路电流促使相应的回路断路器动作.注:碳化通道的出现或穿透试样的击穿可用于区分试验是击穿还是闪络。击穿电压<在连续升压试验中>在规定的试验条件下,试样发生击穿时的电压。<在逐级升压试验中>试样承受住的高电压,即在该电压水平下,整个时间内试样不发生击穿。电气强度在规定的试验条件下,击穿电压与施加电压的两电极之间距离的商。 注除非另有规定,应按本部分5.4规定测定两试验电极之间的距离。试验的意义按本部分得到的电气强度试验结果,能用来检测由于工艺变更、老化条件或其他制造或环境情况而引起的性能相对于正常值的变化或偏离,而很少能用于直接确定在实际应用中的绝缘材料的性能状态材料的电气强度测试值可受如下多种因素的影响:试样的状态a) 试样的厚度和均匀性,是否存在机械应力;b) 试样预处理,特别是干燥和浸渍过程;c) 是否存在孔隙、水分或其他杂质。试验条件a) 施加电压的频率、被形和升压速度或加压时间;b) 环境温度、气压和湿度;c) 电极形状、电植尺寸及其导热系数;d) 周围媒质的电、热特性。在研究还没有实际经验的新材料时,应考虑到所有这些有影响的因素本部分规定了一些特定的条件,以便迅速地判别材料,并可用以进行质量控制和类似的目的.用不同方法得到的结果是不能直接相比的,但每一结果可提供关于材料电气强度的资料。应该指出的是,大部分材料的电气强度随着电极间试样厚度的增加而减小,也随着电压施加时间的增加而减小。由于击穿前的表面放电的强度和延续时间对大多数材料测得的电气强度有显著影响,为了设计直到试验电压无局部放电的电气设备,必须知道材料击穿前无放电的电气强度,但本部分的方法通常不适用于提供这方面的资料。具有高电气强度的材料未必能耐长时期的劣化过程,例如热老化腐蚀或由于局部放电而引起化学腐蚀或潮湿条件下的电化学腐蚀或潮湿条件下的电化学腐蚀,而这些过程都会导致在运行中于较低的电场强度下发生破坏。电极和试样金属电极应始终保持光滑、清洁和无缺陷。注1:当对薄试样进行试验时,电极的维护格外重要为了在击穿时尽量减小电极损伤,优先采用不锈钢电极.接到电极上的导线既不应使得电极倾斟或其他移动或使得试样上压力变化,也不应使得试样周围的电场分布受到显著影响,注2:试验非常薄的薄膜(例如,<5μm厚>时,这些材料的产品标准应规定所用的电极、操作的具体程序和试样的制备方法。垂直于非叠层材料表面和垂直于叠层材料层向的试验植材和片状材料(包括纸植、纸、织物和薄膜)不等直径电极电极极由两个金属圆柱体组成,其边缘倒圆成半径为(3.0土0.2) mm的圆弧。其中一个电极的直径为(25士1) mm,高约25 mm
北广产品保修售后服务承诺:
一、安装调试:协助试验机的安装,负责试验机的运输、调试。
二、验收标准:试验机按订货技术附件进行验收。终验收在买方进行,对用户提供的试样进行试验,并提供测试报告。
三、培训:安装调试同时,在仪器操作现场一次性免费培训操作人员2-3名,该操作人员应是由需方选派的长期稳定的员工,培训后能够对设备基本原理、软件使用、操作、维护事项理解和应用,使人员能够独立操作设备对样品进行检测、分析,同时能进行基本的维护。
四、软件升级:终生免费提供新版本控制软件。
五、保修:1、设备保修两年,终身售后服务,一年内非人为损坏的零部件免费更换,保修期内接到用户邀请后,迟响应时间为2小时内,在与用户确认故障后,我公司会在48小时内派工程师到达现场进行免费服务,尽快查清故障所在位置和故障原因,并向用户及时报告故障的原因和排除办法。
2、保修期内人为损坏的零部件按采购(加工)价格收费更换。
3、保修期外继续为用户提供优质技术服务,在接到用户维修邀请后3天内派工程师到达用户现场进行维修。并享有优惠购买零配件的待遇。
4、传感器过载及整机电路超压损坏不在保修范围内。
六、售后管理:
我公司实现计算机化管理,实行客户定期电话回访制度,定期复查设备的工作情况,定期电话指导用户对设备进行保养和检测,以便设备正常运转,跟踪客户的设备使用情况,以便及时对设备进行维护
仪器组成:
1、升压部件:由调压器和升压变压器组成升压部分;
2、驱动部件:控制器和电机进电机均匀调节升压变压器;
3、检测部件:集成电路组成的测量电路;
4、计算机测控系统;
5、箱体控制系统
仪器优势:
1、自动放电;
2、交流电压、直流电压测试误差1%;
3、电极支架采用Y质环氧板;
4、软件可连续做10组试验对比;
5、试验曲线不同颜色,可叠加对比;
6、软件可设置电流保护功能;
7、带有主机控制区域,不通过电脑可单独控制主机;
8、主机带有电压、电流显示功能;
9、内置排风装置;
10、内置照明功能;
11、放电报警装置;
12、蓝牙远程控制;
13、三色灯报警装置(绿灯箱门关闭良好,黄灯开门小心操作,红灯有高压);
14、可实现触摸屏或电脑双重操作;
15、可实现组合编程,梯度升压的升压和耐压时间可分别单独设置;
16、U盘下载功能,可以将设备中的试验记录直接下载到U盘中。
漆膜工频电压击穿试验仪两种试验方式介绍:
试验方式的选择在系统设置中进行。需要注意的是交流试验时,需要插入硅堆短路杆。直流试验时需要将硅堆短路杆拔出,以免影响实验系数,并且直流试验结束必须进行放电操作,以免残留余电对实验人员造成危险,放电过程如放电棒来回摆动,放电过程中警报灯闪烁,蜂鸣器报警,需等待蜂鸣器停止报警,警报灯不再闪烁,方可打开试验箱门。
三种试验方法介绍:
连续升压:连续升压又分为快速升压和慢速升压两种,其中快速升压为试样电压从零开始以选择的升压速率匀速升压,直到试样击穿为止,击穿电压为击穿瞬间的电压值。慢速升压为试样电压从零升压到达初始电压,到达初始电压后以选定的升压速率升压直到试样击穿,击穿电压为击穿瞬间的电压值。
逐级升压:试样电压从零快速升压到达初始电压,到达初始电压后以梯度保持时间为时间长度,稳定电压,梯度时间结束后继续以选定的升压速率升压,达到下一个梯度电压值再稳定电压,如此过程直到试样击穿。对于击穿电压的确定分为两种情况,可在试样设置中选择采样方式。
瞬时升压:试样电压直接到达初始电压,保持该电压设定时间直到试样击穿,击穿电压为击穿瞬间的电压值。
等直径电极如果使用一电极架便上下电极准确对中放置,误差在1. 0 mm内,则下电极直径可减小到(25士 。 mm,两电极直径差不大于0. 2 mm. 其所测结果与5. 1. 1. 1不等直径电极测得的结果不一定相同。厚样品的试验当有规定时,厚度超过 3mm 的板材和片材应单面机加工至(3. 0 士 0. 2) mm. 然后,试验时将高压电极置于未加工的面上。注:为了避兔网络或因受现有设备限制,必要时可以根据需要,通过机加工把试样制备成更小的厚度。带、薄膜和窄条两个电极为两根金属棒,其直径为(6. 0±0. 1) mm. 垂直安装在电极架内,使一个电极在另一个电 撞上面,试样夹在棒的两个端面之间。上下电极要同心轴,误差在0.1 mm内。 两电极端面应与其轴向相垂直,端面的边缘倒成半径为(1. 0土0.2) mm的圆弧。 上电极压力为(50±2) g且应能在电极架内的沿垂直方向自由移动。出了一种合适的装置。 如果需要使试样在拉伸状态下进行试验,则应将试样夹在架子中,使试样披在如图2所示的规定的位置上。 为达到所需的拉伸,方便的办法是将试样的一端缠在可旋转的圆捧上。为了防止窄条边缘发生闪络,可用薄膜或其他薄的绝缘材料条搭盖在窄条边缘并夹住试样。 此外, 电极周围可以采用防弧密封固,此时电植和密封圈之间留有(1~2) mm的环状间隙。 下电极与试样之间的间隙(在上电极与试样接触之前>应小于0.1 mm。注:对薄膜的试验,见IEC60674-2,1998软管和软套管按GB/T7113. 2-2005进行试验。硬管内径100mm及以下的外电极是(25士1) mm宽的金属箱带,内电极是与内壁紧配合的导体,例如圆棒、管、金属箔或充填直径(0. 75~2. 0) mm的金属球,便与管材的内表面良好接触, 不管怎样,内电极的每端应至少伸出 外电极25 mm。注:当没有有害影响时,可用硅油、硅脂或凡士林将箔贴到试样的内外表面。 硬管(内径大于100 mm)外电极是(75土1)mm宽的金属锚带,内电极是直在(25±1)mm的圆形金属箔,金属箔应相当柔软以适应圆筒的曲率。浇注及模塑材料浇注材料按IEC 60455-2: 1998制样和试验。模塑材料应用一对球电极,每个球的直径为(20.0士0.1) mm,在排列电极时,使它们共有的轴线与试样平面垂直。热固性材料应用(1. 0土0.1) mm厚的试样,这些试样可以按ISO 295: 1991压塑成型或按ISO 10724: 1994注塑成型,其表面尺寸应足以防止闪络。注:如果不能应用(1. 0土0. 1) mm厚的试样,则可用(2. 0土O. 2) mm厚的试样。热塑性材料应用按ISO 294-1: 1996和ISO294-3: 1996中同型注塑成型试样,尺寸为60 mm×60 mm×1 mm. 如果该尺寸不足以防止闪络(见5. 3. 2)或按相关材科标准规定要求用压塑成型试样,此时用按 ISO 293: 1986压塑成型的平板试样,其直径至少为100 mm,厚(1.0±0.1) mm。注塑或压塑的条件见相关材料标准。如果没有可适用的材料标准,则这些条件必须经供需双方协商。硬质成型件对不能将其置于平面电极间的成型绝缘件,应采用对置的等直径球电极。通常用作这类试验的电极直径为12. 5 mm或20 mm。清漆按GB/T 1981. 2-2003进行试验充填胶电极是两个金属球,每个球的直径为(12. 5 ~ 13)mm. 水平同轴放置,除另有规定外,彼此相隔(1. 0土0.1) mm,并都嵌入充填胶内 。 应注意避免出现空隙,特别避免两电极间的空隙。 由于用不同的 电极距离得到的结果不能直接相比,因此必须在材科规范的试验报告中注明间隙距离.平待于非叠层材料表面和平行于叠层材料层向的试验如果不必区分由试样击穿引起的破坏和贯穿表面引起的破坏,则可使用5. 2.1或5. 2. 2 的电极,但 5. 2. 1的电极应被优先采用。当要求防止表面破坏时.应采用5. 2. 3的电般 。平行饭电极 板材和片材试验板材和片材时,试样厚度为被试材料厚度,试样表面为长方形,长(100士2) mm,宽(25. 0士 。.2) mm,试样两侧面应切成垂直于材料表面的两个平行平面。 试样夹在金属平行板之间,两金属板相距25mm,厚度不小于10 mm,电压施加在金属板上。对于薄材料可以用2个或3个试样恰当地放置 <即:使它们的表面形成合适的角度>以支撑上电极。电极应有足够大的尺寸,以覆盖试样边缘至少超过试样各边15 mm,要注意保证试样上下两面的整个面积均与电极良好的接触。电极的边缘应适当倒圆(半径为(3-5)mm),以避免电极的边与边之间的闪络(见图6)注,如果现有设备不能使试样击穿,则可以将试样宽度减少至05. 0±0. 2) mm或 (10.0土O. 2) mm. 试样宽度的这种减少,必须在报告中予以特别说明。这种电极仅适用于厚度至少为1. 5 mm的硬质材料的试验。硬管试验硬管时,试样是一个完整的环或圆弧长度为100 mm的一段环,其轴向长度为(25士0. 2) mm。试样两端应加工成垂直于管铀向的两个平行的平面。将试样放在两平行板电极之间按5. 2. 1. I所述的板材和片材的试验方法进行试验,必要时可用(2~3)个试样来支撑上电极。电极应有足够大的尺寸以使电极覆盖试样并至少超过试样各边15 mm,要注意保证试样上下两面的整个面积均与电极良好接触。锥销电极在试样上垂直试样表面钻两个相互平行的孔,两孔中心距离为(25土1) mm. 两孔的直径这样来确定:用锥度约2%的钱刀扩孔后每个孔的较大的一端的直径不小于4.5 mm且不大5. 5 mm.。钻好的两孔完全贯穿试样,但如果试样是大管子,则孔仅贯穿一个管壁,并在孔的整个长度上用铰刀扩孔。在钻孔和扩孔时,孔周围的材料不应有任何形式的损坏,如劈裂、破碎或碳化。用作电极的锥形销的锥度为(2.0土0. 2)%,并将锥形销压人<但不要锤人>两孔,以使它们能与试样紧密配合,并突出试样每一面至少2 mm(见图7a)和7b))这类电极仅适用于试验厚度至少为1. 5 mm的硬质材料。 平行圆柱形电极对厚度大于15mm的具有高电气强度的试样进行试验时,将试样切成100mm×50 mm,并如图8 所示钻两个孔,每个孔的直径比圆柱形电极的直径大,但差值不大于0.I mm.圆柱形电极直径为(6.0士0.1)mm,并有半球形端部,每个孔的底部是半球形以便与电极端配合,使得电极端部和孔的底部之间间隙在任何点都不超过0.05 mm。如果在材料规范中没有另外规定,则两孔沿其长度的侧面相距应是(10士1)mm,每孔应延伸到离相对的表面(2.25±0. 25) mm以内。两种任选形式的通风电极如回8所示.当使用带小槽的电极时,这些小槽位置应与电极间的间距正好相反。试样除了上述各条中己组述过的有关试样的情况外,通常还要注意下面儿点。制各固体材料试样时,应注意与电极接触的试样两表面要平行,而且应尽可能平整光滑。对于垂直于材料表面的试验,要求试样有足够大的面权以防止试验过程中发生闪络。对于垂直于材料表面的试验,不同厚度的试样其结果不能直接相比(见第4章)。 两电极间距离用来计算电气强度的两电植间距离值应为下列之一(按被试材料的规定)a) 标称厚度或两电极间距离(除非另有规定,一般均采用此值);b) 对于平行于表面的试验,两电极间的距离;c) 在每个试样上击穿点附近直接测悍的厚度或两电极间的距离。试验前的条件处理绝缘材料的电气强度随温度和水份含量而变化, 若被试材料已有规定,则应遵循此规定。 否则,除非另有商定条件,试样应在温度为(23土2)℃,相对湿度为(50士5)%条件下扯理不少于24 h。周围媒质材料应在为防止闪络而选取的周围媒质中试验。在大多数情况下,符合IEC 60296: 2003的变压器油是适用的媒质。对在矿物油中会引起膨胀的材料,此时其他的流体(例如硅油),可能是更合适的。对击穿电压值相对较低的试样,可在空气中试验,此时若要在高温下进行试验时,应注意即使在中等的试验电压下,在电极边缘的放电也会对测试值造成很大影响。如果试图在另一种媒质中时某种材料的性能进行试验评定,则可以应用这种媒质。所选取的媒质应对被试材料的危害影响是小的。周围媒质对试验结果可能有很大影响,特别是对易暖收的材料,如纸租纸板,因此必须在试样制备程序中确定全部的必要步骤(例如干燥和浸渍),以及试验过程中周围媒质的状态。必须有足够的时间让试样和电极达到所要求的温度,但有些材料会因长期处于高温而受到影响。在高温空气中的试验在高温空气中做试验,可在任何设计合理的烘箱中进行,烘箱要有足够大的体棋来容纳试样和电极,使官们在试验时不发生闪络。烘箱应装有空气循环装置使试样周围的温度在规定温度的土2℃内且应大体上保持均匀,把温度计、热电偶或其他测量温度的装置尽可能放在实验点附近测量温度在班体申的试验当试验要在绝缘液体中进行时,除非其他液体更合适外,一般应使用符合IEC 60296: 2003的变庄器油。 必须保证穰体有足够的电气强度以避免网络- 在具有比变压器油更高的的相对电容率的液体中 试验的试样,会出现比在变压器袖中试验时更高的电气强度。 降低变压器油或其他掖体电气强度的杂 质,也可能会增加试样上测得的电气强度。高温下的试验可以在烘箱内的盛液容器中进行<见7. 1),也可在绝缘油作为竟也传递介质的恒温控制的油播中进行。在这种情况下,应采用合适的液体循环措施,以便试样周围的温度大致均匀,并保持在规定温度的±2℃内。电气设备电源用一个可变低压正弦电源供给一个升压变压器来获得试验电压。 变压器及其电源和它的调节装置应具有如下特性。 在回路中有试样的情况下,对等于和小于试样击穿电压的所有电压,试验电压的峰值与有效值(r, m. s)之比为根号2(1土5%)即(1. 34~1. 48)。电源的容量应足够大,使之在发生击穿之前均能符合8. 1. 1 要求,对于大多数材料,在使用推荐的电极的情况下,通常40 mA的输出电流容量巳足够。对于大多数试验来说,电源容量范围为;对于10kV及以下的小电容试样的试验,其容量为0.5kVA;对于试验电压为100 kV以下者则为5 kVA。可变低压电源调节装置应能使试验电压平滑、均匀地变化,无过冲现象。当用一个自耦调压器按第10章施加电压时,所产生的递增的增量不应超过预期击穿电压的2%。对短时试验或快速升压试验,zui好使用马达驱动调节装置。为了保护电源不致损坏,应装有一个装置使在试样击穿的几个周期内切断电源。这个装置可以由一个接在高压回路中的电流敏感元件组成。为了限制在击穿时由电流或电压冲击引起电极的损伤,要求将一个具有合适值的电阻器与电极串联。电阻值的大小应取决于电极所允许的损伤程度。注:应用阻值很高的电阻器可能会导致测得的击穿电压比应用阻值低的电阻器测得的击穿电压值高。电压测量 按等效有效值记录电压值。 较好的方法是用一块峰值电压表并将其读数除以根号2。 电压测量回路的总误差应不超过测得值的5%,该误差包括了由于电压表的响应时间所引起的误差。 在所用的任何升压速率下,该响应时间引起的误差应不大于击穿电压的1%。果用符合8. 2.1要求的电压表来测量施加到电极上的电压。好将它直接接到电极上,也可通过分压器或电压互感器接到电极上。 如果使用升压变压器的测量线圈来测量电压,则施加到电极上的 电压的指示正确度应不受升压变压器负载和串联电阻器的影响。
公司简介
北京北广精仪公司是一家专业从事检测仪器,自动化设备生产的高新科技企业公司,拥有现代化设计开发技术和先进的生产设备。积极专注于多种高性能检测设备及非标自动化设备的生产和研制,主要研发生产的产品:绝缘材料检测仪器(电压击穿试验仪、电阻率测试仪、介电常数测试仪、漏电起痕测试仪、耐电弧测试仪等)海绵泡沫检测仪器(落球回弹测试仪、压缩变形测试仪、压陷硬度测试仪、疲劳冲击试验仪),力学设备(万能试验机)等质量已领先国内先进水平。
仪器优势:
1、自动放电;
2、交流电压、直流电压、电流测试误差1%;
3、电极支架采用优质环氧板;
4、软件可连续做10组试验对比;
5、试验曲线不同颜色,可叠加对比;
6、软件可设置电流保护功能;
7、带有主机控制区域,不通过电脑可单独控制主机;
8、主机带有电压、电流显示功能;
9、内置排风装置;
10、内置照明功能;
11、放电报警装置;
12、蓝牙远程控制;
13、三色灯报警装置(绿灯箱门关闭良好,黄灯开门小心操作,红灯有高压);
14、可实现触摸屏或电脑双重操作;
15、可实现组合编程,梯度升压的升压和耐压时间可分别单独设置;
16、U盘下载功能,可以将设备中的试验记录直接下载到U盘中。
仪器特点:
1、独立的控制系统,模块式结构方便于售后维护,外观美观大气,整个实验过程中无噪音,电级自动对中定位,操作方便,安全系数大,精度高。
2、由设备本身触摸屏及控制面板进行操作控制,如不需要进行曲线分析,可不配备计算机。
3、如需进行曲线分析,可配备计算机,只进行数据及曲线记录功能,不进行设备控制,避免了试验人员在计算机和设备间交替操作,更人性化。
4、设备具有试验参数记忆功能,相同试验条件不需要每次试验都进行设置,且断电仍会记忆后一次试验设置参数。
5、试验界面简单明了,且配有示意曲线说明,参数不同,曲线走势不同,方便理解。
6、控制面板简洁,功能标注明确,操作简单。
7、可记录并同时显示10次试验记录,方便试验数据的对比分析。且可以随时舍弃不理想的任意一组数据。
8、增加了U盘下载功能,可以将设备中的试验记录直接下载到U盘中。
9、如配备计算机,可生成详细的试验报告单,包括每一组具体信息,多组综合信息,及曲线。
10、设备试验界面采用仪表盘及数字同时且实时显示的方式,更方便试验过程的观看。
11、设备具有安全警告提示,在未关闭试验箱门时试验无法开始,且会弹出警告,在满度(即:高压变压器无输出)时会弹出警告,且试验过程中如果开门,试验会自动结束。
12、采用蓝牙数据传输,解决由于有隔离墙阻挡穿墙过线的麻烦和远距离操作安全可靠;
13、设备配有三色报,绿灯亮时表示箱门关闭良好可以开始试验,黄灯亮时表示试验箱门打开,此时可进行试样更换。红灯亮时表示高压大于0.5KV,此时不要开箱门。
GB1408-2016 GB/T 507-2002
GB/T1695-2005 DL429.9-91
GB/T3333 绝缘油击穿电压测定
HG/T 3330 绝缘油介电强度测定法
GB12656 ASTM D149.

主要功能:
1、试验过程中可动态绘制出试验曲线,试验的曲线可以多种颜色叠加对比。
2、可对试验数据进行编辑修改,灵活适用;
3、试验条件及测试结果等数据可自动存储;
4、试验报告格式灵活可变,适用于不同用户的不同需求;
5、可对一组试验中曲线数据的有效与否进行人为选定;
6、试验结果数据可导入EXECL,WORD文档编辑;
7、过电流保护装置有足够的灵敏度,能够保证试样击穿时在0.1S内切断电源;
8、仪器运行的持久性: 仪器可连续运行使用,不需为保护仪器而定期停机。
9、软件可以设置管理员与各个使用人员自己的参数和报告存储权限.木材胶粘剂拉伸剪切强度的试验方法
ASTM D149 标准要求本标准适用于绝缘漆漆膜击穿强度的测定,系在一定条件下,采用连续均匀升压的方式对漆膜施加交流电压直至击穿,击穿电压值与漆膜厚度之比为击穿强度E,以千伏/毫米表示,GB 12656-1990.Determination of electric strength at power trequence for capacitor paper. GB 12656参照采用IEC 243- 1(1988)《固体绝缘材料电气强度测试方法》。 1主题内容 与适用范围 GB 12656规定了工频下测定电容器纸击穿电压的方法。 GB 12656适用于未浸渍电容器纸页或其他类似的材料。 2引用标准 GB450纸和纸板试样的采取 GB 1408固体绝缘材料工频电 气强度的试验方法 3定义 3.1击穿电压breakdown voltage 在规定的试验条件下,用连续均匀升压的方法对电容器纸施加工频电压,使纸样发生击穿时的电压值. 3.2电气强度electric stength 在规定的试验条件下,电容器纸试样发生击穿的电压值除以施加电压的两电极之间纸样的平均厚度。 4试验仪器 4.1工频击穿试验仪应符合GB1408第5章试验设备的规定. 4.2电极 4.2.1电极材料 为黄铜。 4.2.2尺寸: 上电极φ25 mm,边缘倒圆半径r=2.5 mm; 下电极φ25mm,边缘击穿的判断在电击穿的同时,回路中电流增加和试样两端电压下降。电流的增加可使断路器跳开或熔丝烧断.但是有时也可由于闪络、试样充电电流、漏电或局部版电电流、设备磁化电流或误动作而引起断路嚣跳开.因此,断路器应与试验设备及被试材料的特性相匹配,否则,断路器可能会在试样未击穿时动作或当试样击穿时断路器不动作,这样便不能正确地判断出是否击穿。
介质击穿电压(电击穿电压),名词:使得位于两个电极之间的绝缘材料失去介电性能的电势差。讨论一介质击穿电压有时也简称“击穿电压”。介电失效(在测试中),名词:指在测试限制的电场条件下,能够持久由介电电导率上升所证明的情况。绝缘强度,名词:指在测试的特定条件下,使得绝缘材料介电失效时的电压梯度。电气强度,名词:参见绝缘强度。讨论一在国际上,“电气强度”更常用些。闪络,名词:指发生在绝缘体或绝缘体周围介质的破坏性电火花,不一定对绝缘体产生损害。其他与固体绝缘体材料相关术语的定义耐电压击穿试验仪测试方法概要在工业电频率条件下(如无特殊说明,则为60Hz),对测试样品采用不同的电压。以使用电压所描述三种方法中的一种,将电压从0或从低于击穿电压的恰当电压开始,升高到测试样品发生介电失效为止。大多数情况下,在测试样品的两边安装简单的测试电极,以进行电压测试。测试样品可以是模制的,也可以是铸造的,或是从扁平薄板或厚板上切割下来的。也可以使用其他的电极或样品结构以适应样品材料的几何形状,或是模拟正在被评估材料的特定用途ASTM D149-2009介电击穿电压试验方法
耐电压击穿试验仪意义和使用电绝缘的绝缘强度是决定材料可以在何种条件下使用的关键性能。在很多情况下,材料的绝缘强度是所使用装置设计的决定性因素。本方法中介绍的测试,将用于提供部分所需的信息,以判断材料在一定应用条件下的适用性;当然也能用于检测由于流程的变化,老化的程度,或是其他制造或环境条件而造成的变化或是与正常特征的偏差。该测试方法可以有效地应用于流程控制,验证或研究测试。本测试方法所获得的结果,很少能直接用于实际使用材料介电性能的判断。在大多数情况下,还需要对其他功能测试和/或对材料测试所获得的结果进行比较,以估计出它们对特定材料的影响,才能进行评价。具体说明三种电压使用方法。方法A,快速测试;方法B,逐步测试;方法C,慢速测试。方法A常用于质量控制测试。较费时的方法B和C通常给出较低的结果,但在对不同材料进行相互比较时,它们所给出的结果更有说服力。如果可以安装电动电压控制器,那么慢速测试法将比逐步测试法更简单,也更常用。方法B和C所获得的结果可以相互比较。电容器纸工频击穿电压测定法
GB 12656-90本标准参照采用IEC243-1(1988)(固体绝缘材料电气强度测试方法)。主题内容与适用范围本标准规定了工频下测定电容器纸击穿电压的方法。本标准适用于未浸渍电容器纸页或其他类似的材料。引用标准GB450纸和纸板试样的采取GB 1408固体绝缘材料工频电气强度的试验方法定义击穿电压breakdown voltage在规定的试验条件下,用连续均匀升压的方法对电容器纸施加工频电压,使纸样发生击穿时的电压值。电气强度electric sttength在规定的试验条件下,电容器纸试样发生击穿的电压值除以施加电压的两电极之间纸样的平均厚度。
电压击穿测试仪,体积表面电阻率测试仪,介电常数介质损耗测试仪,漏电起痕试验仪,耐电弧试验仪,TOC总有机碳分析仪,完整性测试仪,无转子硫化仪,门尼粘度试验机,热变形维卡温度测定仪,简支梁冲击试验机,毛细管流变仪,橡胶塑料滑动摩擦试验机,氧指数测定仪,水平垂直燃烧试验机,熔体流动速率测定仪,低温脆性测试仪,拉力试验机,海绵泡沫压陷硬度测试仪,海绵泡沫落球回弹测试仪,海绵泡沫压缩永九变形试验仪

报价:¥38000
已咨询107次介电击穿强度测定仪
报价:¥38000
已咨询92次介电击穿强度测定仪
报价:¥38000
已咨询86次介电击穿强度测定仪
报价:¥38000
已咨询124次介电击穿强度测定仪
报价:¥20000
已咨询93次高频介电常数测试仪
报价:¥20000
已咨询98次高频介电常数测试仪
报价:¥20000
已咨询142次高频介电常数测试仪
报价:¥20000
已咨询90次高频介电常数测试仪
报价:¥38000
已咨询90次玻璃电压击穿试验仪
报价:¥38000
已咨询86次介电击穿强度测定仪
报价:¥38000
已咨询64次介电击穿强度测定仪
报价:¥38000
已咨询112次绝缘漆漆膜电压击穿试验仪
报价:¥15000
已咨询1814次电线电缆耐漏电起痕试验仪
报价:¥38000
已咨询104次绝缘漆漆膜电压击穿试验仪
报价:¥38000
已咨询47次介电击穿强度测定仪
报价:面议
已咨询1464次
氧指数测定仪 数字显示自带温控仪用于评估材料的阻燃性能,通过测量材料在氧氮混合气体中维持燃烧所需的氧浓度(极限氧指数)来判断其燃烧特性。它广泛应用于塑料、橡胶、纤维、泡沫塑料、纺织品等材料的燃烧性能测试,符合GB/T 5454、ISO 4589-2等国内外标准。
塑胶橡胶PVC燃烧氧指数测定仪通入23℃±2℃的氧、氮混合气体时,刚好维持材料燃烧的小氧浓度,以体积分数表示。将一个试样垂直固定在向上流动的氧、氮混合气体的透明燃烧筒里,点燃试样顶端,并观察试样的燃烧特性,把试样连续燃烧时间或试样燃烧长度与给定的判据相比较,通过在不同氧浓度下的一系列试验。
智能全自动氧指数测定仪橡胶氧含量测试主要用于评估材料的阻燃性能,通过测量材料在氧氮混合气体中维持燃烧所需的最低氧浓度(极限氧指数)来判断其燃烧特性。它广泛应用于塑料、橡胶、纤维、泡沫塑料、纺织品等材料的燃烧性能测试,符合GB/T 5454、ISO 4589-2等国内外标准。
智能化全自动触摸屏控制氧指数测定仪主要用于评估材料的阻燃性能,通过测量材料在氧氮混合气体中维持燃烧所需的最低氧浓度(极限氧指数)来判断其燃烧特性。它广泛应用于塑料、橡胶、纤维、泡沫塑料、纺织品等材料的燃烧性能测试,符合GB/T 5454、ISO 4589-2等国内外标准。
JF-5型全自动氧指数测定仪塑料橡胶纤维主要用于评估材料的阻燃性能,通过测量材料在氧氮混合气体中维持燃烧所需的最低氧浓度(极限氧指数)来判断其燃烧特性。它广泛应用于塑料、橡胶、纤维、泡沫塑料、纺织品等材料的燃烧性能测试,符合GB/T 5454、ISO 4589-2等国内外标准。
可调频可调速可设置 阻抗分析仪具有多种功能和更高测试频率的新型LCR数字电桥,体积小,紧凑便携,便于上架。本系列仪器基本精度为0.05%,测试频率高500kHz及10mHz的分辨率,4.3寸的LCD屏幕配合中英文操作界面,操作方便简洁。集成了变压器测试功能,提高了测试效率。仪器提供了丰富的接口,能满足自动分选测试,数据传输和保存的各种要求。测量无源器件的误差低至0.05%,仪器易于,安装、调整和校准都非常快捷,是进货检验,质量控制,自动化测试等应用的理想选择。
精密阻抗分析仪 频率高达130MHz由高频阻抗分析仪、测试装置,标准介质样品组成,能对绝缘材料进行 高低频介电常数(ε)和介质损耗角(D或tanδ) 的测试。它符合国标GB/T 1409-2006,美标ASTM D150以及IEC60250规范要求。
元件阻抗特性分析仪具有多种功能和更高测试频率的新型LCR数字电桥,体积小,紧凑便携,便于上架。本系列仪器基本精度为0.05%,测试频率高500kHz及10mHz的分辨率,4.3寸的LCD屏幕配合中英文操作界面,操作方便简洁。集成了变压器测试功能,提高了测试效率。仪器提供了丰富的接口,能满足自动分选测试,数据传输和保存的各种要求。测量无源器件的误差低至0.05%,仪器易于,安装、调整和校准都非常快捷,是进货检验,质量控制,自动化测试等应用的理想选择。