各向异性对高取向Bi2Te3电沉积薄膜热电性能的影响
-
【引言】
由于开发替代能源的必要性,相比于那些依赖化石燃料的能源,热电材料已经引起了人们的极大关注。Bi2Te3基合金就是一种热电材料,非常适合在室温至100℃的温度范围内工作。Antonova等人的工作中,强调了平行和垂直于C轴的单晶体碲化铋的室温各向异性热电性能。因此,可以利用Bi2Te3薄膜的各向异性特性来获得Z大性能。
【成果介绍】
Cristina V. Manzano等人采用脉冲电沉积法,制备了沿[110]晶相的高取向Bi2Te3薄膜。对这些薄膜的结构、组成和形貌进行了表征。通过使用LinseisLSR-3 系统测量塞贝克系数、各方向的电导率和热导率,确定了平行和垂直于衬底表面的热电性能品质因数(zT)。在300K时,Bi2Te3薄膜的面内和面外品质因数分别为(5.6±1.2)·10-2和(10.4±2.6)·10-2。
【图文导读】
图1:(A)Bi2Te3的晶体结构。(B)在本工作中测量的电沉积膜的方向。
图2: Bi2Te3脉冲电沉积薄膜的X射线衍射图。衍射图y轴使用对数标尺,以强调薄膜中没有其他方向。
图3:Bi2Te3薄膜的SEM图像。(A)俯视图,(B)横截面。
图4:面内测量电阻率、塞贝克系数和功率因数随温度的变化。
图5:室温下的面外塞贝克系数。(a)塞贝克系数分布,和(b)由商业系统塞贝克微探针测量的塞贝克系数图。
图6:平面外导电设置方案。
【结论】
通过改变生长周期中无电流部分的持续时间得到了脉冲电流,再利用脉冲电沉积工艺得到沿[110]方向高取向的Bi2Te3薄膜。在300 K时,平面内的品质因数约为(5.6±1.2)·10-2,而平面外的品质因数为(10.4±2.6)·10-2。通过这些测量,揭示了Bi2Te3电沉积薄膜的电、热导率各向异性和塞贝克系数各向同性。垂直于c轴的电导率几乎是平行于c轴的电导率的5(4.8)倍。垂直于c轴的塞贝克系数在沿c轴的塞贝克系数的实验不确定度范围内,表明电沉积膜的该特性具有各向同性。从平面内到平面外的导热率增加了两倍。由300K时的面内和面外测量值,分别得到zT// c =(5.6±1.2)·10-2和zT⊥c =(10.4±2.6) ·10-2的品质因数,从而使面内和面外热电性能增加了1.8倍。
(来源:林赛斯(上海)科学仪器有限公司)
全部评论(0条)
热门问答
- 各向异性对高取向Bi2Te3电沉积薄膜热电性能的影响
【引言】
由于开发替代能源的必要性,相比于那些依赖化石燃料的能源,热电材料已经引起了人们的极大关注。Bi2Te3基合金就是一种热电材料,非常适合在室温至100℃的温度范围内工作。Antonova等人的工作中,强调了平行和垂直于C轴的单晶体碲化铋的室温各向异性热电性能。因此,可以利用Bi2Te3薄膜的各向异性特性来获得Z大性能。
【成果介绍】
Cristina V. Manzano等人采用脉冲电沉积法,制备了沿[110]晶相的高取向Bi2Te3薄膜。对这些薄膜的结构、组成和形貌进行了表征。通过使用LinseisLSR-3 系统测量塞贝克系数、各方向的电导率和热导率,确定了平行和垂直于衬底表面的热电性能品质因数(zT)。在300K时,Bi2Te3薄膜的面内和面外品质因数分别为(5.6±1.2)·10-2和(10.4±2.6)·10-2。
【图文导读】
图1:(A)Bi2Te3的晶体结构。(B)在本工作中测量的电沉积膜的方向。
图2: Bi2Te3脉冲电沉积薄膜的X射线衍射图。衍射图y轴使用对数标尺,以强调薄膜中没有其他方向。
图3:Bi2Te3薄膜的SEM图像。(A)俯视图,(B)横截面。
图4:面内测量电阻率、塞贝克系数和功率因数随温度的变化。
图5:室温下的面外塞贝克系数。(a)塞贝克系数分布,和(b)由商业系统塞贝克微探针测量的塞贝克系数图。
图6:平面外导电设置方案。
【结论】
通过改变生长周期中无电流部分的持续时间得到了脉冲电流,再利用脉冲电沉积工艺得到沿[110]方向高取向的Bi2Te3薄膜。在300 K时,平面内的品质因数约为(5.6±1.2)·10-2,而平面外的品质因数为(10.4±2.6)·10-2。通过这些测量,揭示了Bi2Te3电沉积薄膜的电、热导率各向异性和塞贝克系数各向同性。垂直于c轴的电导率几乎是平行于c轴的电导率的5(4.8)倍。垂直于c轴的塞贝克系数在沿c轴的塞贝克系数的实验不确定度范围内,表明电沉积膜的该特性具有各向同性。从平面内到平面外的导热率增加了两倍。由300K时的面内和面外测量值,分别得到zT// c =(5.6±1.2)·10-2和zT⊥c =(10.4±2.6) ·10-2的品质因数,从而使面内和面外热电性能增加了1.8倍。
(来源:林赛斯(上海)科学仪器有限公司)
- 电沉积为什么能够生成氧化物薄膜
- 高氯酸钠对dna提取的影响
- 高氯酸钠对于放线菌的dna提取有没有影响啊?我们已经提了几天都没有出现dna沉淀,不明白他有没有破坏作用。。。 方法如下:1.5~2g湿菌体,加入20ml 1×TES,充分打散菌体 ↓加入2mg溶菌酶 37℃水浴保温30-60分钟,温和摇动 ↓加入2ml 20% SDS (终浓度为2%)... 高氯酸钠对于放线菌的dna提取有没有影响啊?我们已经提了几天都没有出现dna沉淀,不明白他有没有破坏作用。。。 方法如下:1.5~2g湿菌体,加入20ml 1×TES,充分打散菌体 ↓加入2mg溶菌酶 37℃水浴保温30-60分钟,温和摇动 ↓加入2ml 20% SDS (终浓度为2%) 55℃水浴保温10分钟,然后冷却至室温 ↓加入100μl蛋白酶K溶液 55℃水浴保温30-60分钟,温和摇动 ↓加入5ml 5M NaClO4溶液 加入等体积(27ml) P:C:I混合液,充分振荡使其呈乳浊液,约30~60分钟 ↓5000rpm,4℃,20-30分钟离心 用剪去枪尖的枪头吸取上层水相,转移至新的离心管中,重复用P:C:I抽提2-3次至没有蛋白膜出现为止 ↓加入70μl RNase溶液 37℃水浴保温30-60分钟 ↓ 加入等体积的C:I混合液,充分振荡 ↓5000rpm,4℃,20-30分钟离心 转移上层水相至烧杯中,冰浴,加入1/10体积预冷的3M NaAc-1mM EDTA-Na2及等体积的冷异丙醇,使DNA沉淀 ↓用玻璃棒绕起DNA丝 望各位高手指点一二!!不胜感激。。 展开
- 导热系数高低对导热性能影响?
- 聚乙烯醇薄膜的性能
- 薄膜厚度对氧气透过率的影响研究
摘要:薄膜的厚度是影响氧气透过量的重要因素。本文分别测试了厚度为10 μm、12 μm、15 μm、25 μm的同种材质的薄膜材料的氧气透过量,对比了该材质薄膜的氧气透过量随相应厚度变化情况,并介绍了试验原理、相关压差气体渗透仪的参数及适用范围、试验过程等内容,为材料氧气透过量的研究及测试提供参考。
关键词:厚度、氧气透过量、压差法、压差法气体渗透仪、薄膜材料、阻氧性能
1、意义
对于材质结构相同的包装材料而言,材料的厚度是影响其阻隔性能的重要因素。材料的厚度增加,延长了气体在包装材料中的渗透路径,使得气体从试样的一侧渗透到另一侧的时间增加,从而降低了渗透过材料的气体量,提高了材料对气体的阻隔性能。然而,材料厚度增加势必会提高包装成本,且环保性降低,因此,在选用包装时如何协调控制包装成本、保证包装环保性及阻隔性三者的关系,则需要研究材料厚度与其阻隔性能的关系。本文针对性测试了相同材质材料、不同厚度薄膜对应的氧气透过量,并绘制厚度与氧气透过量关系趋势图,以评价厚度对材料阻氧性的影响。
2、试验样品
本次试验以某种单层膜材料为试验样品,分别测试厚度为10μm、12μm、15μm、25μm样品的氧气透过量。
3、试验依据
目前,软塑包装材料氧气透过量的测试方法包括压差法、等压法(库仑计法),本次试验采用压差法对样品进行测试,试验过程依据方法标准GB/T 1038-2000《塑料薄膜和薄片气体透过性试验方法 压差法》进行。
4、试验设备
本文采用GPT-203压差法气体渗透仪测试样品的氧气透过量,该设备由济南赛成电子科技有限公司自主研发生产。
4.1 试验原理
仪器采用压差法测试原理,将预先处理好的试样放置在上下测试腔之间,夹紧。首先对低压腔(下腔)进行真空处理,然后对整个系统抽真空;当达到规定的真空度后,关闭测试下腔,向高压腔(上腔)充入一定压力的试验气体,并保证在试样两侧形成一个恒定的压差(可调);这样气体会在压差梯度的作用下,由高压侧向低压侧渗透,通过对低压侧内压强的监测处理,从而得出所测试样的各项阻隔性参数。
4.2 适用范围
基础应用
薄膜——适用于各种塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔、铝箔复合膜等膜状材料的气体渗透性能测试
片材——适用于各种工程塑料、橡胶、建材等片状材料的气体渗透性能测试,如PP片材、PVC片材、PVDC片材等
扩展应用
多种不同气体——适合于多种气体的透过率测试,如氧气、二氧化碳、氮气、空气、氦气等
易燃易爆气体——适用于各种薄膜对易燃易爆气体的阻隔性能测试
生物降解膜——适用于生物降解膜的透气性能测试,如淀粉生物降解袋等
航空航天用材料——适用于航空航天用材料的气体透过率测试,如飞艇气囊的氦气透过性测试
纸及纸板——适用于纸及纸塑等复合材料的透气性测试,如烟包铝箔纸、利乐包装片材、方便面纸碗、一次性纸杯等
漆膜——适用于基材上涂覆油漆薄膜的透气性测试
玻纤布、玻纤纸等材料——适用于玻纤布、玻纤纸等材料的透气性测试,如特氟龙漆布、特氟龙高温布、氟硅胶布等
化妆品软管片材——适用于各种化妆品软管、铝塑管、牙膏管片材的气体透过性测试
各种橡胶片材——适用于各种橡胶片材的透气性测试,如汽车轮胎透气性测试
5、试验过程
(1) 从厚度为10 μm的样品表面裁取3片直径为97 mm的试样,在设备的三个测试腔周边均匀涂抹真空油脂,并各放置一片支撑用滤纸,然后将3片试样分别装夹在3个测试腔中,拧紧测试腔盖。
(2) 设备连接氧气气源。在控制软件中设置试样名称、试样厚度、试验温度、湿度及试验模式等参数信息,点击试验选项,打开真空泵,启动试验。设备按照设定的参数对试样的氧气渗透性能进行测试,并在试验结束后显示试验结果。
(3) 按照(1)、(2)中的步骤依次测试厚度为12 μm、15 μm、25 μm样品的氧气透过量。
6、试验结果
取每种样品3片试样测试结果的算术平均值为该样品的氧气透过量。本次所测得厚度为10 μm、12 μm、15 μm、25 μm样品的氧气透过量分别为84.608 cm3/(m2·24h·0.1MPa)、67.069 cm3/(m2·24h·0.1MPa)、56.483 cm3/(m2·24h·0.1MPa)、29.164 cm3/(m2·24h·0.1MPa)。根据样品厚度及对应的氧气透过量作图,如图2所示。
7、结论
本次试验利用压差法设备GPT-203 压差法气体渗透仪对4种厚度不同的相同材质薄膜样品的氧气透过量进行了测试,设备易于操作,试验效率高,试验结果的精度高,重复性好,可以真实的反映出样品对氧气的阻隔性能。从图2中可以看出,随着厚度的增加,样品的氧气透过量降低,说明样品对氧气的阻隔性能随样品厚度的增加而提高;另外,随着厚度的增加,样品氧气透过量的变化趋势变缓,即在样品厚度较薄时,厚度增加,样品的阻氧性能提高明显,但随着厚度的继续增加,厚度的变化对提高样品阻氧性能的影响变小。
济南赛成仪器一直致力于为大部分国家客户提供高性价比的整体解决方案,公司的核心宗旨就是持续创新,打造高精尖检测仪器,满足行业内不同客户的品控需求,期待与行业内的企事业单位增进交流和合作。
赛成仪器,赛出品质,成就未来!
- 聚乙烯的熔融指数对产品性能的影响
- 奥氏体枝晶对铸铁性能的影响
灰铸铁是一种含有碳、硅、锰等多种元素的铁合金。它的强度之所以较低,是因其中所含有的碳元素大多以片状石墨的形态存在。这些片状石墨对基体组织起严重的割裂作用。因此,传统的灰铸铁熔炼工艺是以降低含碳量来保证灰铸铁具有所要求的强度。但是,含碳量降低 会使灰铸铁的铸造性能变差,容易出现缩孔、缩松、浇不足等铸造缺陷。另外,在传统工艺中,含锰量也控制得比较低,一般在0.5%-1.0%的范围之内。
近年来,随着铸铁凝固理论的发展,人们对锰在灰铸铁中的作用有了更深入的了解。我们根据这些新认识,特别是从“高碳当量、高强度灰铸铁”的生产工艺中受到启发,改变传统工艺中“双低一高”(即低碳、低锰、高硅)的作法,以“双高一低气高碳、高锰,低硅的配料原则来编制灰铸铁的熔炼工艺。这样做,不但提高了灰铸铁的机械性能,而且改善了铸件的壁厚敏感性,消除了缩松、热裂等铸造缺陷。
两年多来,我们在生产中全面推广了这种新工艺,使用不良生铁生产出了水轮机、汽轮机、砖压机、出口立钻等重大产品的铸件,并解决了生产中存在多年的难题.取得了较好的经济效益。
新工艺的理论依据
过去,由于检测手段的限制,人们在铸铁凝固研究中的ZD是研究凝固后的组织。现在,检测手段发展了,人们进而可以研究凝固过程中的组织。通过研究,发现铸铁凝固过程中的奥氏体枝晶骨架是影响铸铁性能的重要因素。形象地说,灰铸铁可以看成是一种类似钢筋混凝土的结构。奥氏体枝晶就是钢筋,共晶组织就是混凝土.金相分析证明.奥氏体枝晶是灰铸铁中的独立组成相,即使通过共析转变和共晶奥氏体结合,也仍然保持着自身的骨架形态和作用。因此,奥氏体枝晶的数量多、晶粒细小,必然使铸铁的强度提高。并且.枝晶的显微硬度越高,铸铁的强度越高。奥氏体枝晶对铸铁的性能还有如下一些影响:
1.奥氏体枝晶与铸铁的显微缩松
铸铁的显微缩松是由于枝晶间的凝固收缩得不到补偿所致。根据铸铁凝固理论,在大多数情况下.灰铸铁的实际共晶转变过程都是在已经具有大量初生奥氏体骨架间的残余铁液中进行的。通过电子金相技术观察也发现,缩松处的奥氏体枝晶的空间形貌确实是框架结构、因此,细化奥氏体枝晶,一方面可以提高铸铁的枝晶补缩(又称过滤补缩)能力,减轻晶间缩松的倾向。另一方面。奥氏体枝晶越多、越细,骨架间残余铁液的体积被分隔得越小,继续凝固时,即使得不到足够的补缩,形成的空洞的体积也就越小.只要这些空洞小得足以不影响铸件的使用,就可以认为所得的铸件是合格的。总之,奥氏体枝晶越小,铸铁的缩松倾向越小,组织越致密。
2. 奥低体枝晶与热裂
根据铸件热裂形成机理中的强度理论,热裂的产生是在铸铁凝固过程中一定温度时(一般认为是共晶反应结束前后),铸件收缩受阻产生的应力,大于该温度下铸铁的强度极限,这样就会形成热裂。因此,提高铸铁的高温强度,即提高奥氏体枝晶的强度,减小共晶反应区间,有助于防止热裂产生。
在研究灰铸铁断裂中发现,奥氏体枝晶有阻碍裂纹扩展的作用。裂纹遇到枝晶大多改变方向,沿枝晶外缘继续扩展。所以,细化奥氏体枝晶也有助于防止热裂产生。
另外,裂纹形成后,如果还有残余的液相被输送到裂纹处,可以使这些裂纹“愈合”。因此,铸铁的枝晶补缩能力强也有助于防止热裂产生。(摘自《电炉炼钢》)
NJ-HW878A型高频红外元素分析仪可检测的材料有:普碳钢、低合金钢、中合金钢、高合金钢、生铁、灰铸铁、球墨铸铁、耐磨铸铁、铝合金、铜合金、铁矿石、锌合金等。仪器可检测所有常规元素C、S、Mn、P、Si、Cr、Ni、Mo、Cu、Ti、Al、W、V、Nb、Fe、ΣRe、Mg、Co、Sb、As、Sn、Pb等。
南京诺金高速分析仪器厂
2020年6月20日
- 盐度高对水生动植物的影响?
- 如何测试物理沉积(PVD)薄膜的膜厚
- 导热硅脂对散热性能影响大吗
- 导热硅脂对散热性能影响大吗
- 薄膜厚度对氧气透过量的影响研究
对于材质结构相同的包装材料而言,材料的厚度是影响其阻隔性能的重要因素。材料的厚度增加,延长了气体在包装材料中的渗透路径,使得气体从试样的一侧渗透到另一侧的时间增加,从而降低了渗透过材料的气体量,提高了材料对气体的阻隔性能。然而,材料厚度增加势必会提高包装成本,且环保性降低,因此,在选用包装时如何协调控制包装成本、保证包装环保性及阻隔性三者的关系,则需要研究材料厚度与其阻隔性能的关系。本文针对性测试了相同材质材料、不同厚度薄膜对应的氧气透过量,并绘制厚度与氧气透过量关系趋势图,以评价厚度对材料阻氧性的影响。
1、试验样品
本次试验以某种单层膜材料为试验样品,分别测试厚度为10μm、12μm、15μm、25μm样品的氧气透过量。
2、试验依据
目前,软塑包装材料氧气透过量的测试方法包括压差法、等压法(库仑计法),本次试验采用压差法对样品进行测试,试验过程依据方法标准GB/T 1038-2000《塑料薄膜和薄片气体透过性试验方法 压差法》进行。
3、试验设备
本文采用GPT-203 压差法气体渗透仪测试样品的氧气透过量,该设备由济南赛成仪器电子科技有限公司自主研发生产。
3.1 试验原理
压差法原理即根据压力传感器所测得气体压力的变化情况得到材料的气体渗透性能相关参数,也是通过压力差使气体在试样两侧发生渗透。将试样装夹在设备的测试腔中,使设备的上、下腔分开,上腔中充填测试气体,下腔通过抽真空形成低压环境,上腔的气体通过试样渗透到下腔中,下腔中的气体压力因此而发生变化。通过下腔中的压力传感器对下腔气体压力随渗透时间的增加情况的实时监测,即可计算得到试样的气体透过量、气体渗透系数、扩散系数及溶解度系数等气体渗透参数。
3.2设备参数
测试范围 0.1 ~ 10,000 cm3/m2·24h·0.1MPa(常规)
试样件数 1件
真空分辨率 0.05 Pa
测试腔真空度 <10 Pa
控温范围 室温 ~ 50°C
控温精度 ±0.5°C
试样尺寸 Φ95 mm
透过面积 33.18 cm2
试验气体 O2、N2、CO2等气体 (气源用户自备)
试验压力 0.4 MPa ~ 0.6 MPa
接口尺寸 Ф6 mm聚氨酯管
外形尺寸 400 mm (L) × 475 mm (W) × 450 mm (H)
电源 AC 220V 50Hz
净重 75 kg
4、试验过程
(1) 从厚度为10 μm的样品表面裁取3片直径为97 mm的试样,在设备的三个测试腔周边均匀涂抹真空油脂,并各放置一片支撑用滤纸,然后将3片试样分别装夹在3个测试腔中,拧紧测试腔盖。
(2) 设备连接氧气气源。在控制软件中设置试样名称、试样厚度、试验温度、湿度及试验模式等参数信息,点击试验选项,打开真空泵,启动试验。设备按照设定的参数对试样的氧气渗透性能进行测试,并在试验结束后显示试验结果。
(3) 按照(1)、(2)中的步骤依次测试厚度为12 μm、15 μm、25 μm样品的氧气透过量。
5、试验结果
取每种样品3片试样测试结果的算术平均值为该样品的氧气透过量。本次所测得厚度为10 μm、12 μm、15 μm、25 μm样品的氧气透过量分别为84.608 cm3/(m2·24h·0.1MPa)、67.069 cm3/(m2·24h·0.1MPa)、56.483 cm3/(m2·24h·0.1MPa)、29.164 cm3/(m2·24h·0.1MPa)。
6、结论
本次试验利用压差法设备GPT-203 压差法气体渗透仪对4种厚度不同的相同材质薄膜样品的氧气透过量进行了测试,设备易于操作,试验效率高,试验结果的精度高,重复性好,可以真实的反映出样品对氧气的阻隔性能。随着厚度的增加,样品的氧气透过量降低,说明样品对氧气的阻隔性能随样品厚度的增加而提高;另外,随着厚度的增加,样品氧气透过量的变化趋势变缓,即在样品厚度较薄时,厚度增加,样品的阻氧性能提高明显,但随着厚度的继续增加,厚度的变化对提高样品阻氧性能的影响变小。
济南赛成仪器一直致力于为大部分国家客户提供高性价比的整体解决方案,公司的核心宗旨就是持续创新,打造高精尖检测仪器,满足行业内不同客户的品控需求,期待与行业内的企事业单位增进交流和合作。
赛成仪器,赛出品质,成就未来!
- ITO薄膜的基本性能
- 如何利用电化学工作站进行电沉积
- chi604d电化学工作站能做电沉积吗?
- 为什么沉积氮化硅薄膜时要通氮气
- 挤出机过滤网对薄膜产品有什么影响?
- PVDF对锂离子电池正极材料的性能有没有影响
5月突出贡献榜
推荐主页
最新话题
-
- #DeepSeek如何看待仪器#
- 干体炉技术发展与应用研究
- 从-70℃到150℃:一台试验箱如何终结智能...从-70℃到150℃:一台试验箱如何终结智能调光膜失效风险?解决方案:SMC-210PF-FPC温湿度折弯试验箱的五大核心价值1. 多维度环境模拟,覆盖全生命周期测试需求超宽温域:支持-70℃至+150℃的极限温度模拟(可选配),复现材料在极寒、高温、冷热冲击下的性能表现;控湿:湿度范围20%~98%RH(精度±3%RH),模拟热带雨林、沙漠干燥等复杂工况,暴露材料吸湿膨胀、分层缺陷;动态折弯:0°~180°连续可调折弯角度,支持R1~R20弯曲半径设定,模拟实际装配中的微小应力,提前预警裂纹、断裂风险。
参与评论
登录后参与评论