仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

应用方案

仪器网/ 应用方案/ Surface functionalization, morphology and thermal pr

立即扫码咨询

联系方式:400-822-6768

联系我们时请说明在仪器网(www.yiqi.com)上看到的!

扫    码    分   享
In the present work, the pure polyamide6 (PA6) nanofiber and PA6/organically modified montmorillonite (O-MMT) composite nanofiber were firstly prepared by a facile compounding process with electrospinning, and then coated by nanosize Fe2O3 using magnetron sputter technique. The effects of Fe2O3 sputter coating on structures, surface morphology and thermal stability were characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM) and thermogravimetric analyses (TGA), respectively.The SEM images showed that the diameters of composite nanofiber were decreased with the loadings of O-MMT and the nanosize Fe2O3 is well coated on the surface of the homogeneous and cylindrical nanofibers. The XPS spectra reflected the chemical features of the deposited nanostructures. The EDX confirmed the presence of the O-MMT and Fe2O3 in the fibers. The AFM observation revealed that there was a remarkable difference in the surface morphology of composite nanofiber before and after sputter coating. The TGA analysis indicated the barrier effects of silicate clay layers and catalysis effects of Fe2O3 improved thermal stability properties of the composite nanofiber. CSPM5500扫描探针显微镜

参与评论

全部评论(0条)

推荐方案

在线留言

上传文档或图片,大小不超过10M
换一张?
取消