2025-07-29 13:58:22氰化氢光纤耦合池
氰化氢光纤耦合池是一种用于处理氰化氢气体的高技术设备。它通过将氰化氢气体与光纤系统耦合,实现对气体的高灵敏度检测和分析。该设备利用光纤的传输特性,将气体吸收或散射的光信号转化为电信号,进而对氰化氢浓度进行精确测量。氰化氢光纤耦合池具有响应速度快、测量精度高、抗干扰能力强等特点,广泛应用于环境监测、工业安全及科研实验等领域。

资源:4357个    浏览:58展开

氰化氢光纤耦合池相关内容

产品名称

所在地

价格

供应商

咨询

氰化氢光纤耦合池1530至1565nm校准和传感,森泉光电
国外 美洲
面议
青岛森泉光电有限公司

售全国

我要询价 联系方式
PPLN光纤耦合封装模块
国内 上海
面议
上海昊量光电设备有限公司

售全国

我要询价 联系方式
光纤耦合半导体激光器
国内 上海
面议
上海屹持光电技术有限公司

售全国

我要询价 联系方式
Wavelength References 乙炔光纤耦合池1510-1540nm校准和传感
国外 美洲
面议
青岛森泉光电有限公司

售全国

我要询价 联系方式
1045nm 光纤耦合输出飞秒激光器
国外 欧洲
面议
上海昊量光电设备有限公司

售全国

我要询价 联系方式
2025-05-21 11:15:28半导体激光器怎么导入光纤
半导体激光器怎么导入光纤:技术要点与应用分析 半导体激光器作为现代光通信、激光加工以及医疗设备中不可或缺的核心组件,其光输出特性与光纤的匹配问题成为影响系统性能的关键因素之一。如何高效地将半导体激光器的光束导入光纤,确保光能的大化传输,并减少损耗,是许多技术人员和工程师研究的。本文将深入探讨半导体激光器导入光纤的关键技术,分析光耦合的原理、光纤的选择以及在不同应用中的实际挑战与解决方案。 半导体激光器与光纤的光耦合原理 在进行光耦合时,首先要理解半导体激光器的输出光束和光纤的光学特性。半导体激光器输出的光束具有较高的发散角,而光纤通常要求光束进入的角度与光纤的核心区域完全对接。为了实现高效的耦合,必须考虑到两个方面:光束的聚焦与光纤的接收能力。 1. 光束的聚焦 半导体激光器输出的光束通常呈现一定的发散度,因此需要使用光学透镜系统进行聚焦。这些透镜可以有效地将激光器输出的光束聚焦到光纤的输入端口,从而减少光能在传输过程中的损耗。常见的聚焦方式有单透镜聚焦和复合透镜系统聚焦两种方式,前者结构简单且成本较低,后者则适用于更高精度的光纤耦合。 2. 光纤的选择 光纤的选择同样是影响光耦合效率的重要因素。主要有单模光纤和多模光纤两种类型。单模光纤能够提供更低的损耗和更高的传输质量,适用于长距离光通信。而多模光纤则适合短距离应用,其成本较低,且能够支持较大的光斑面积。选择合适的光纤不仅影响耦合效率,也决定了系统的传输质量与成本。 光纤与半导体激光器的接驳技术 对于半导体激光器与光纤的接驳,常见的技术方法包括自由空间耦合和微型光学模块耦合。 1. 自由空间耦合 自由空间耦合技术采用透镜或反射镜将激光器输出的光束导入光纤。该方法简单,且不需要复杂的光学对准,但是要求激光器和光纤之间的空间距离和对准精度较高,稍有偏差就可能导致光损失。 2. 微型光学模块耦合 随着光纤通信技术的不断发展,微型光学模块成为了一种更精确的光耦合技术。这些模块内置了精密的光学元件,可以更地将激光输出端和光纤接头对准,减小了光损耗并提高了传输效率。 半导体激光器耦合光纤的应用 在实际应用中,半导体激光器导入光纤的技术广泛应用于光通信、医疗激光、激光显示和精密制造等领域。尤其在光纤通信中,半导体激光器与光纤的高效耦合直接关系到信号的质量和传输距离;而在激光加工和医疗领域,精确的光束传输可以保证加工精度和治果。 总结 半导体激光器与光纤的光耦合技术是光学系统设计中的一项关键技术,影响着系统的光效、稳定性与成本。在实际操作中,合理的光纤选择、精确的光束聚焦技术以及高效的光耦合方式是提高传输效率的关键因素。随着光通信和激光技术的不断进步,未来将会出现更多创新的解决方案,进一步推动相关行业的发展与应用。
182人看过
2022-02-08 14:54:53解析示波器通道耦合与触发耦合的区别
相信大家对示波器有着一定的了解,都知道示波器中有两反设置,其实,在示波器当中也存在两种“两耦”设置,一种是通道耦合方式,另一种是触发耦合方式。在电子电路中,将前级电路(或信号源)的输出信号送至后级电路(或负载)称为耦合。耦合的作用就是把某一电路的能量输送(或转换)到其他的电路中去。先来说示波器通道的耦合方式,一般打开示波器的通道菜单,就可以看到示波器有三种通道耦合方式的设置,分别是直流耦合、交流耦合、地。我们给示波器输入一个频率为1KHz、幅值为100V、偏置为50V的正弦波信号(即该信号含有50V的直流分量)。直流耦合也叫DC耦合,当选择此选项时,信号通过导线直接到前端放大器,被测信号含有的直流分量和交流分量都能通过,可用于查看低至0Hz且没有较大DC偏移的波形。此时信号显示如图所示:交流耦合也叫AC耦合,当选择此选项时,信号通过电容耦合到前端放大器,被测信号的直流信号被阻隔,只允许交流分量通过,可用于查看具有较大直流偏移的波形。此时信号显示如图所示:可以看到信号从零点(左侧黄色五边形里面写了个1的就是零点)往下移动了,上图中零点在波形下方位置,此时零点处于波形中间位置,因为信号的直流分量被过滤掉了。示波器的垂直档位是20V/div,信号下移了2格半,差不多正好就是50V。当耦合方式为地时,代表内部输入接地,断开外部输入。此时信号显示如图所示:接地耦合的作用是在不方便外部断开,或者外部干扰很大的时候,帮助我们准确寻找零点。通道耦合,是用来控制信号到达示波器前端放大器的能量输送方式。触发耦合,就是用来控制信号到达示波器触发电路的能量输送方式。常见的触发耦合有直流、交流、高频Y制、低频抑制、噪声抑制。类似通道耦合,当选择直流耦合的时候,直流分量和交流分量都能通过触发。选择交流耦合的时候,示波器会滤除触发信号中的直流成分。高频抑制会抑制触发信号中高于50KHz的信号,低频抑制会抑制触发信号中低于50KHz的信号,而噪声抑制,是用低灵敏度的直流耦合来抑制触发信号中的高频噪声。我们来看下面这个信号:此信号选用交流耦合,当触发电平超出波形的时候,信号依然可以被扫描同步。因为此信号是一个2V的方波,其中带有1V的直流分量。因此当触发耦合方式为交流时,信号实际应该下移1V,因此当触发电平-500mV时依然可以被触发。再来看下下面这个信号:此信号选用低频抑制,虽然触发电平在信号范围内,但是由于触发信号中低于50KHz的信号被抑制,因此信号依然无法被扫描同步,出现信号不稳定的现象。通道耦合与触发耦合虽然都是耦合但有本质的区别,它们只是并行的两个通道信号的耦合,两个通道的信号不会相互影响的。如需了解更多,欢迎访问安泰测试网www.agitek.com.cn。
310人看过
2025-05-22 14:15:21固体激光器可以光纤传输吗
固体激光器可以光纤传输吗?这个问题常常困扰着激光技术的研究人员和工程师。随着光纤通信技术和激光器技术的不断发展,越来越多的激光器种类被应用于光纤系统中。固体激光器作为一种常见的激光源,其是否能够与光纤结合并进行高效的光纤传输,成为了技术发展的一个重要课题。本文将深入探讨固体激光器与光纤传输的关系,分析其技术可行性、挑战以及实际应用中的解决方案。 固体激光器的工作原理基于固态材料的激发和光放大过程,常见的固体激光器包括掺镱激光器、掺铒激光器等。与传统的气体激光器和半导体激光器相比,固体激光器通常具有较高的输出功率和较长的激光波长,适用于多种工业应用。固体激光器是否可以有效地与光纤结合进行传输,涉及到多个技术因素。 固体激光器的输出光通常是通过光学系统进行耦合到光纤中的。这一过程要求激光器的输出光斑与光纤的光学模式匹配。由于固体激光器输出的光斑形状和光纤的接收模式不同,因此在进行光纤传输时,常常需要使用透镜、反射镜等光学元件来实现高效耦合。固体激光器输出的光功率较大,这就要求光纤的传输损耗要尽量低,以确保信号在光纤中能够稳定传输。 固体激光器与光纤的耦合和传输也面临一些挑战。例如,激光器的输出光通常是空间非高斯模式,而光纤传输要求的是高斯模式光波。这就需要在设计上进行优化,以实现较高的传输效率。光纤传输的波长范围有限,固体激光器的波长选择必须适应光纤的工作波长窗口,才能确保传输效果。 尽管如此,近年来,随着光纤技术的不断进步和固体激光器设计的创新,固体激光器与光纤的高效耦合和长距离传输已经得到了实现。例如,利用特殊设计的光纤,如大模式光纤(MMF)和特种光纤,可以更好地适配固体激光器的输出光斑,从而提高传输效率和稳定性。光纤激光器和激光光纤耦合器的不断发展也为固体激光器光纤传输提供了新的解决方案。 总结来说,固体激光器在与光纤的结合与传输方面,虽然存在一定的技术挑战,但通过合适的耦合技术和光纤设计,已经能够实现高效、稳定的光纤传输。随着相关技术的不断进步,固体激光器与光纤的结合将会在许多领域得到广泛应用,推动激光通信、传感技术等领域的创新和发展。
147人看过
2023-07-05 10:58:55复合相变材料与液冷耦合的动力电池热管理系统的研究
HS-TGA-103热重分析仪主要由加热系统、称重系统、温度控制系统和数据处理系统组成。在测试过程中,样品被放置在加热系统内,通过温度控制系统进行升温。同时,称重系统监测样品的质量变化,并将数据传输至数据处理系统进行分析。通过测量样品质量随温度的变化,热重分析仪能够揭示材料的热稳定性和动力学行为等信息。复合相变材料与液冷耦合的动力电池热管理系统的研究【南昌大学 刘自强】复合相变材料与液冷耦合的动力电池热管理系统的研究上海和晟 HS-TGA-103 热重分析仪
159人看过
2023-08-04 11:22:00光纤微裂纹诊断仪(OLI)如何快速对硅光芯片耦合质量检测?
硅光是以光子和电子为信息载体的硅基电子大规模集成技术,能够突破传统电子芯片的极限性能,是5G通信、大数据、人工智能、物联网等新型产业的基础支撑。光纤到硅基耦合是芯片设计十分重要的一环,耦合质量决定着集成硅光芯片上光信号和外部信号互联质量。耦合过程中最困难的地方在于两者光模式尺寸不匹配,硅光芯片中光模式约为几百纳米,而光纤中则为几个微米,几何尺寸上巨大差异造成模场的严重失配。准确测量耦合位置质量及硅光芯片内部链路情况,对硅光芯片设计和生产都变得十分有意义。光纤微裂纹诊断仪(OLI)对硅光芯片耦合质量和内部裂纹损伤检测,非常有优势,可精准探测到光链路中每个事件节点,具有灵敏度高、定位精准、稳定性高、简单易用等特点,是硅光芯片检测不二选择。OLI测试硅光芯片耦合连接处质量使用OLI测量硅光芯片耦合连接处质量,分别测试正常和异常样品,图1为硅光芯片耦合连接处实物图。图1硅光芯片耦合连接处实物图OLI测试结果如图2所示,图2(a)为耦合正常样品,图2(b)为耦合异常样品。从图中可以看出第一个峰值为光纤到硅基波导耦合处反射,第二个峰值为硅基波导到空气处反射,对比两幅图可以看出耦合正常的回损约为-61dB,耦合异常,耦合处回损较大,约为-42dB,可以通过耦合处回损值来判断耦合质量。(a)耦合正常样品(b)耦合异常样品图2 OLI测试耦合连接处结果OLI测试硅光芯片内部裂纹使用OLI测量硅光芯片内部情况,分别测试正常和内部有裂纹样品,图3为耦合硅光芯片实物图。图3.耦合硅光芯片实物图OLI测试结果如图4所示,图4(a)为正常样品,图中第一个峰值为光纤到波导耦合处反射,第二个峰值为连接处到硅光芯片反射,第三个峰为硅光芯片到空气反射;图4(b)为内部有裂纹样品,相较于正常样品再硅光芯片内部多出一个峰值,为内部裂纹表现出的反射。使用OLI能精准测试出硅光芯片内部裂纹反射和位置信息。(a)正常样品(b)内部有裂纹样品图4.OLI测试耦合硅光芯片结果因此,使用光纤微裂纹诊断仪(OLI)测试能快速评估出硅光芯片耦合质量,并精准定位硅光芯片内部裂纹位置及回损信息。OLI以亚毫米级别分辨率探测硅光芯片内部,可广泛用于光器件、光模块损伤检测以及产品批量出货合格判定。
192人看过
按需定制浮球液位开关
深井探测检测器
无烟煤量热仪
层析实验冷柜CXLG-800
INOXPA流量计
深水探测仪
生物颗粒热值检测机器
生物质热值检测仪
深水探测仪器
下水管探测仪器
生物颗粒发热量分析设备
防爆型红外气体分析仪
电力电信管道探测器
深井深水探测仪
氰化氢光纤耦合池
西班牙INOXPA卫生型转子泵
电脑一体测硫仪
刹车线圈
煤炭大卡化验仪
自动化光学系统
德国RESATRON伺服电机
深水探测器
德国ROEHM顶尖
电脑一体测硫仪
生物颗粒燃料化验仪器
水面救援机器人
深水深井探测器
西班牙INOXPA流量计
RESATRON伺服电机
电信管道检测仪
电信管道探测器
石油矿井检测仪
德国Ringfeder胀紧套
多气体光纤流通池
磁性溶胶
气室流通池
防爆型红外气体分析仪
氰化氢光纤耦合池
工业过程气体分析
光纤耦合池
冲击性能检测仪
落镖式冲击测试仪