2025-01-10 10:49:53高分辨单细胞三维成像系统
高分辨单细胞三维成像系统是一种先进的生物医学研究工具,能够实现对单个细胞的高精度三维成像。该系统采用高分辨率显微镜技术,结合先进的图像处理算法,能够捕捉到细胞内部的细微结构和动态变化。它适用于细胞生物学、发育生物学、肿瘤学等多个领域,帮助研究人员深入了解细胞功能、形态及相互作用机制。该系统具有操作简便、成像速度快、数据准确等特点,是生物医学研究中不可或缺的重要仪器。

资源:12630个    浏览:16展开

高分辨单细胞三维成像系统相关内容

产品名称

所在地

价格

供应商

咨询

高分辨质谱仪
国外 亚洲
$500000
捷欧路(北京)科贸有限公司

售全国

我要询价 联系方式
N80 高分辨台式显微CT
国外 欧洲
€50
复纳科学仪器(上海)有限公司

售全国

我要询价 联系方式
Gatan Mono CL4 高分辨成像与光谱分析阴极发光成像系统
国外 美洲
面议
北京欧波同光学技术有限公司

售全国

我要询价 联系方式
三级过滤高分辨四极质谱仪
国外 欧洲
面议
北京英格海德分析技术有限公司

售全国

我要询价 联系方式
通信波段高分辨近红外光谱仪
国内 上海
面议
上海昊量光电设备有限公司

售全国

我要询价 联系方式
2023-03-07 22:09:15高通量单细胞力谱测定!多功能单细胞显微操作技术助力单细胞力学研究
单程细胞具有复杂生物学性质,它们通过细胞外基质ECM形成紧密的细胞与基质细胞与细胞连接,诸如上皮细胞通过这种特殊的链接方式构成了屏障层保护人体免受外界损伤。因此细胞之间以及细胞基底的粘附力测定对于研究细胞粘附蛋白的机制有着重要意义。使用力学工具测量细胞间以及细胞与基质之间的粘附力始终不是一件容易的事情。首先,由于细胞与基质的作用力仅为nN级别,因此需要力学精度较高的设备才能够测量,而且在这其中较为适合的工具为原子力显微镜(AFM)。原子力显微镜能够提供纳米级别的操作精度并可测量从pN~nN范围的力谱。但是受制于AFM探针本身的限制,需要借助修饰手段才能够让细胞与探针固定到一起,这个过程十分繁琐,并且由于需要大量手工操作很难实现高通量的测量。而不同的细胞由于细胞异质性使得要想确定粘附力需要较多样本才能获得相对准确的值,无法实现高通量测量直接限制了原子力探针在细胞粘附力上的应用。而多功能单细胞显微操作FluidFM技术的出现改变了这一现状,它使用特殊的中空探针能够轻松地通过负压抓取细胞,取得和AFM近似精度的数据,无需在探针上进行任何修饰,不会改变细胞表面的任何通路,从而能够得到接近细胞原生的数据。在实验结束后能够通过正压快速丢弃用过的细胞,具备很高的自动化,能够快速测量细胞粘附力。使用FluidFM对细胞操作的基本流程 FluidFM在粘附力测量上具备显著优势。如图所示,FluidFM能够通过负压将细胞吸附到原子力探针的末端,通过高精度位移台的控制将细胞从基底上分离,并且同时记录FD曲线。通过FD曲线能够获得最大粘附力Fmax和粘附能量Emax。通过高度自动化的控制系统能够在短时间内测量大量细胞粘附力,评估细胞群体分布以及细胞间差异,并且可有效避免传统粘附力测量因准备时间过长而错过最佳测量时间导致的细胞粘附力改变,得到更为精准的结果。近期,Agoston等人使用多功能单细胞显微操作系统FluidFM实现了高通量细胞粘附力测量,对同种细胞不同区以及不同细胞之间的粘附力进行测量和比较。作者首先对Vero和Hela细胞在不同状态下的粘附力进行了测量和比较,总共测量了214个细胞。通过比较明胶涂层上处于单个细胞、孤岛状细胞、致密连接细胞以及单层细胞上游离细胞之间的粘附力,能够明显观测到Vero细胞处于致密连接的细胞粘附力最大,大概在750 nN左右,随着细胞单细胞层的稀疏,细胞粘附力有所下降,而处于细胞层顶部的细胞粘附力最低仅为50 nN左右。这一点充分说明上皮细胞能够在细胞之间形成紧密的连接,而处于细胞层外的细胞则几乎没有粘附力。而对于HeLa这样的肿瘤细胞测量的结果却显示出了截然不同的结果,处于不同状态的细胞有着近似的粘附力,基本都在200 nN左右,这与处于单个游离上皮细胞的粘附力十分接近,表明HeLa细胞在不同环境下仍然具有较高迁徙能力。使用FluidFM对不同区域细胞的FD曲线测定结果和对比        通过对这两种细胞的最大粘附力、最大粘附能量、最大拉伸距离和细胞接触面积进行统计分析可以发现,HeLa肿瘤细胞在粘附力和粘附能量上均有所降低,但是当HeLa细胞形成了单层后,两者区别不大。对比Hela和Vero在不同生长状态下的最大粘附力、最大粘附能量、粘附拉伸距离和粘附面积。再进一步对Vero与HeLa细胞最大粘附力与距离和接触面积进行对比,依然可以得到与单独比较粘附力相同的结果,并且最大能量与细胞接触面积的比值中也存在着类似的结果。由此可见肿瘤细胞通过降低自身粘附力从而获得了更好的迁移能力。对不同状态Vero和A549之间的粘附力/粘附距离、粘附力/粘附面积、粘附能量/粘附面积 总结       细胞粘附力测定在细胞生命科学研究中起着至关重要的作用,然而传统手段中有着各种各样的局限性,主要原因是缺乏一种有效抓取细胞并进行力学测定的手段。现如今FluidFM技术在细胞粘附力测定中的应用,使得研究者们有了一种能够有效、低损的方式抓取细胞,配合原子力显微镜精确测量的特性,真正意义上做到精准、无损、快速的测量单细胞粘附力,帮助研究者寻找细胞粘附力与细胞生命发展、肿瘤细胞转移之间的关系。 【参考文献】[1] A. Sancho, M. B. Taskin, L. Wistlich, P. Stahlhut, K. Wittmann, A. Rossi & J. Groll. Cell Adhesion Assessment Reveals a Higher Force per Contact Area on Fibrous Structures Compared to Flat Surfaces. ACS Biomater. Sci. Eng. 2022, 8, 2, 649–658.[2] P.W. Doll, K. Doll, A. Winkel, R. Thelen, R. Ahrens, M. Stiesch & A.E. Guber. Influence of the Available Surface Area and Cell Elasticity on Bacterial Adhesion Forces on Highly Ordered Silicon Nanopillars. ACS Omega. 2022, 7, 21, 17620–17631.[3] Sankaran, S. Jaatinen, L. Brinkmann, J. Zambelli, T. Vörös, J. Jonkheijm, P. Cell adhesion on dynamic supramolecular surfaces probed by fluid force microscopy-based single-cell force spectroscopy. ACS Nano 2017, 11, 3867–3874.[4] Sancho, A. Vandersmissen, I. Craps, S. Luttun, A. Groll, J. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci. Rep. 2017, 7, 46152.[5] Ines, Lüchtefeld. Alice, Bartolozzi. Julián M. M. Oana, Dobre. Michele, Basso. Tomaso, Zambelli. Massimo, Vassalli. Elasticity spectra as a tool to investigate actin cortex mechanics. J Nanobiotechnol. 2020, 18, 147.[6] Dehullu, J. Valotteau, C. Herman-Bausier, P. Garcia-Sherman, M. Mittelviefhaus, M. Vorholt, J. A. Lipke, P. N. Dufrene, Y. F. Fluidic force microscopy demonstrates that homophilic adhesion by Candida albicans Als proteins is mediated by amyloid bonds between cells. Nano Lett. 2019, 19, 3846–3853.[7] Mittelviefhaus, M. Müller, D. B. Zambelli, T. Vorholt, J. A. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 2019, 13, 1878–1882.[8] F. Weigl, C. Blum, A. Sancho & J. Groll. Correlative Analysis of Intra- versus Extracellular Cell Detachment Events vis the Alignment of Optical Imaging and Detachment Force Quantification. Adv. Mater. Technol. 2022, 2200195.【相关产品】  多功能单细胞显微操作系统- FluidFM OMNIUM:https://www.yiqi.com/zt2203/product_386418.html
172人看过
2023-02-24 11:28:18高通量、自动化单细胞力谱测定!多功能单细胞显微操作全新技术助力单细胞力学研究
研究现状单程细胞具有复杂生物学性质,它们通过细胞外基质ECM形成紧密的细胞与基质细胞与细胞连接,诸如上皮细胞通过这种特殊的链接方式构成了屏障层保护人体免受外界损伤。因此细胞之间以及细胞基底的粘附力测定对于研究细胞粘附蛋白的机制有着重要意义。使用力学工具测量细胞间以及细胞与基质之间的粘附力始终不是一件容易的事情。首先,由于细胞与基质的作用力仅为nN级别,因此需要力学精度较高的设备才能够测量,而且在这其中较为适合的工具为原子力显微镜(AFM)。原子力显微镜能够提供纳米级别的操作精度并可测量从pN~nN范围的力谱。但是受制于AFM探针本身的限制,需要借助修饰手段才能够让细胞与探针固定到一起,这个过程十分繁琐,并且由于需要大量手工操作很难实现高通量的测量。而不同的细胞由于细胞异质性使得要想确定粘附力需要较多样本才能获得相对准确的值,无法实现高通量测量直接限制了原子力探针在细胞粘附力上的应用。多功能单细胞显微操作FluidFM技术多功能单细胞显微操作FluidFM技术的出现改变了这一现状,它使用特殊的中空探针能够轻松地通过负压抓取细胞,取得和AFM近似精度的数据,无需在探针上进行任何修饰,不会改变细胞表面的任何通路,从而能够得到接近细胞原生的数据。在实验结束后能够通过正压快速丢弃用过的细胞,具备很高的自动化,能够快速测量细胞粘附力。使用FluidFM对细胞操作的基本流程FluidFM在粘附力测量上具备显著优势。如图所示,FluidFM能够通过负压将细胞吸附到原子力探针的末端,通过高精度位移台的控制将细胞从基底上分离,并且同时记录FD曲线。通过FD曲线能够获得最 大粘附力Fmax和粘附能量Emax。通过高度自动化的控制系统能够在短时间内测量大量细胞粘附力,评估细胞群体分布以及细胞间差异,并且可有效避免传统粘附力测量因准备时间过长而错过最 佳测量时间导致的细胞粘附力改变,得到更为精 准的结果。
109人看过
2025-02-14 14:45:15凝胶成像系统介绍图怎么看?
凝胶成像系统介绍图 凝胶成像系统作为生物医学领域中重要的实验工具之一,广泛应用于基因组学、蛋白质组学等多个科研领域,帮助研究人员高效、准确地分析和可视化生物样本中的核酸、蛋白质以及其他分子。这篇文章将介绍凝胶成像系统的工作原理、应用范围及其在科研中的重要性,同时通过详细的图解帮助读者更好地理解这一系统的核心功能和优势。 凝胶成像系统的基本原理 凝胶成像系统的核心技术是利用凝胶电泳分离样本中的分子,通过特定的染色剂使得分子在紫外线或可见光下显现,从而达到可视化效果。凝胶电泳是一种常用的分离技术,利用不同分子在电场中的迁移速度差异进行分离。通过凝胶成像系统,研究人员能够清晰地观察到不同大小、不同性质的分子带,从而进行进一步的分析。 凝胶成像系统的工作原理主要包括三个步骤。研究人员将样本加到凝胶孔中,并在电场作用下进行电泳分离。使用染料或探针对目标分子进行标记,这些标记物在特定的光源下会发出可见的信号。利用成像系统捕捉信号并生成图像,研究人员可根据图像的结果进行定量分析、分子比对等操作。 凝胶成像系统的应用领域 凝胶成像系统在生命科学研究中有着广泛的应用。常见的应用场景包括DNA、RNA和蛋白质的分析。例如,在基因研究中,凝胶成像系统能够清晰地展示PCR产物的大小、浓度等信息,为基因扩增实验提供重要依据。对于蛋白质研究,通过Western Blot实验,凝胶成像系统也能够有效地展示蛋白质的分子量及表达情况。 凝胶成像系统还被应用于免疫学、分子诊断、食品安全检测等多个领域。随着技术的不断进步,凝胶成像系统的功能也不断拓展。高分辨率、高清成像、自动化分析等特点使得这一系统成为科研实验室中不可或缺的工具。 凝胶成像系统的优势 凝胶成像系统具备许多其他分析方法无法比拟的优势。凝胶成像系统具有较高的分辨率和灵敏度,能够检测到微小的分子差异,这对于科研中的分析至关重要。成像系统通常配备有先进的软件支持,能够自动化处理实验数据并生成图像,极大地提高了工作效率和实验的可靠性。凝胶成像系统的操作简便,通常不需要复杂的操作即可完成数据的采集和分析,降低了实验的难度和时间成本。 凝胶成像系统凭借其高效、的特点,已经成为生命科学研究中不可或缺的工具。无论是在基因组学研究、蛋白质分析,还是在临床诊断和食品检测等领域,凝胶成像系统都展现出了极大的应用潜力。 随着技术的不断进步和市场需求的不断增长,凝胶成像系统未来有望实现更高性能、更智能化的提升。对于科研人员来说,掌握这一工具的使用技巧和数据分析方法,将有助于提升实验的质量和效率,推动科学研究的深入发展。
83人看过
2025-02-18 14:30:11骨髓细胞成像系统步骤有哪些?
骨髓细胞成像系统步骤 骨髓细胞成像技术是医学研究中重要的一部分,尤其在血液学和肿瘤学领域,能够为我们提供详细的细胞级图像,帮助科研人员观察骨髓中的细胞分布、形态和功能变化。通过成像系统,我们可以更准确地诊断各种血液疾病,包括白血病、贫血等。这篇文章将详细介绍骨髓细胞成像系统的步骤,从准备工作到成像操作,以及后期分析的流程,旨在为广大研究人员提供一套全面、系统的操作指南,提升实验效率与成像质量。 骨髓细胞成像系统的准备 在开始骨髓细胞成像之前,首先需要做好充分的准备工作。这些准备步骤对于确保实验的顺利进行至关重要。准备好样本。骨髓样本通常通过骨髓穿刺获得,样本应在采集后迅速进行处理。样本需要通过合适的固定方法处理,以确保细胞结构不会在后续操作过程中遭到损坏。常用的固定液体包括福尔马林或乙醇,固定后需要在显微镜载玻片上制备切片,确保切片的厚度和质量适合成像需求。 确保成像设备的正常运转。骨髓细胞成像系统一般采用荧光显微镜或共聚焦显微镜等先进的成像设备。在设备的准备阶段,检查显微镜的光源、镜头、激光等功能是否正常,确保能够清晰地观察细胞的细节。 骨髓细胞成像的操作步骤 一旦准备工作完成,便可进入骨髓细胞的成像阶段。成像的步是将处理好的切片放置在显微镜的载物台上。根据实验需求,可以选择适合的染色方法,如免疫荧光染色。免疫荧光染色能够帮助研究人员标记出特定类型的细胞或分子,便于在显微镜下进行清晰观察。 启动成像系统,调节显微镜的光学设置。为获得佳成像效果,研究人员需要根据细胞样本的特性调整成像的光源强度、曝光时间、焦距等参数。特别是在使用共聚焦显微镜时,焦距的微调对于获得细胞的三维图像至关重要。 骨髓细胞成像的图像处理与分析 图像采集后,接下来的任务是对图像进行处理与分析。这一阶段通常包括图像去噪、对比度调整、三维重建等步骤。通过图像处理软件,可以将不同层次的图像合成三维模型,帮助科研人员更直观地观察细胞分布和形态变化。 图像分析也可以通过自动化算法进行,帮助快速识别和分类不同类型的细胞。在一些复杂的病例中,基于成像的分析能够揭示细胞之间的微小差异,甚至有助于早期发现病变区域。 注意事项与挑战 尽管骨髓细胞成像系统能够提供高度精确的细胞级图像,但在操作过程中仍然有一些注意事项。样本的质量直接影响成像结果,任何制备过程中的疏忽都可能导致成像效果不佳。成像设备的调节需要经验丰富的操作人员,过度曝光或者不当的染色可能导致图像失真,影响数据分析的准确性。 随着成像技术的不断发展,自动化程度和数据处理能力也在不断提升。利用人工智能技术辅助图像分析,能够进一步提高细胞成像的效率和准确性,这也是未来骨髓细胞成像系统发展的趋势。 结语 骨髓细胞成像技术通过系统的操作步骤为血液疾病的研究提供了极其重要的支持。从样本准备、成像操作到图像处理分析,每个步骤都需要精确执行,以确保研究结果的可靠性。随着成像技术和数据分析方法的不断进步,骨髓细胞成像系统将在医学研究和临床诊断中发挥越来越重要的作用。
50人看过
2025-02-14 14:45:14生物芯片点样仪三维图片怎么看?
生物芯片点样仪三维图片的技术应用 生物芯片点样仪作为现代生物技术研究的重要工具,广泛应用于基因组学、蛋白质组学以及药物筛选等领域。随着技术的进步,生物芯片点样仪的性能不断提升,尤其是三维成像技术的应用,使得芯片的点样过程更加精确、直观。本篇文章将探讨生物芯片点样仪的三维图像技术,阐述其在科学研究中的应用和前景,并分析其在精确度、效率提升方面的优势。 生物芯片点样仪的基本原理 生物芯片点样仪是一种高精度设备,主要用于将微量生物样本精确地点样到芯片表面。通过控制微量样品的体积和位置,确保每一个样本的分布均匀且有规律。传统的点样方法通常依赖于二维成像技术来监控点样过程。由于二维图像的限制,它在准确性、样本定位等方面存在一定局限。 为了突破这一限制,许多高端生物芯片点样仪开始引入三维成像技术。三维图像不仅能够提供样本的空间位置,还能够更好地反映样本在芯片上的分布状态,从而进一步提高点样的精确度和可靠性。 三维图像技术的应用 三维图像技术通过激光扫描、光学成像等方式,生成样本在三维空间中的详细图像。这种技术能够从多个角度对样品进行扫描,提供深度信息。相比于传统的二维图像,三维图像更为直观,可以清晰地展示点样过程中样本的微小变化,尤其在分子层面的微小样本调整上,三维成像的优势尤为突出。 通过高分辨率的三维图像,研究人员能够更精确地监控每个点样位置,确保每一滴生物样本都被放置在预定位置,从而大大提升实验的成功率和数据的可靠性。在基因研究和药物筛选领域,精确的点样能够帮助提高实验效率,减少误差,确保结果的真实性和重复性。 三维图像技术带来的优势 提高精度和稳定性:三维图像技术能够提供更高的空间分辨率,从而提高点样精度。通过对样本进行三维重建,能够更准确地判断样本是否正确放置,避免由于样本错位带来的实验错误。 优化实验效率:传统的二维成像可能因为视角限制而遗漏细微的样本定位错误。三维成像技术可以通过多角度扫描,确保每个样本都在正确的位置,减少了实验中对样本重复调整的时间,提高了实验效率。 增强数据分析能力:通过三维图像,研究人员不仅能够观察到样本的位置,还能够分析样本的形态、大小等物理属性。这使得数据的分析更加全面、深入,能够为后续研究提供更为精确的参考。 未来展望 随着生物芯片技术的不断发展,三维图像技术也将进一步优化,预计未来将有更多新型的三维成像技术与生物芯片点样仪相结合,推动生物医学研究向更高精度、更高效率的方向发展。随着人工智能和大数据技术的应用,生物芯片点样仪的三维成像技术还将进一步智能化,极大地提升数据分析和处理的速度与准确性。 生物芯片点样仪的三维图像技术不仅提高了点样的精度和实验效率,还为未来的生物医学研究提供了更为强大的数据支持和技术保障。随着技术的不断演进,生物芯片点样仪将更加智能化和高效化,为医疗和生物学研究领域的发展贡献更大力量。
57人看过
液体密度计
高精度压力变送器
高分辨单细胞三维成像系统
超高速全自动氨基酸分析仪