- 2025-04-25 14:16:26座椅阻尼器阻尼脂
- 座椅阻尼器阻尼脂是一种高性能的润滑脂,专门设计用于座椅阻尼器中的减振和缓冲作用。它能有效减少阻尼器在运动过程中的摩擦和磨损,提高阻尼器的稳定性和耐久性。该阻尼脂具有优异的黏附性和剪切稳定性,能在各种温度和湿度条件下保持稳定的性能。同时,它还具有良好的防锈、防腐蚀性能,能保护阻尼器免受外界环境的侵蚀,延长其使用寿命。
资源:3032个 浏览:62次展开
座椅阻尼器阻尼脂相关内容
座椅阻尼器阻尼脂产品
产品名称
所在地
价格
供应商
咨询

- 旋转阻尼器阻尼脂
- 国内 广东
- 面议
-
深圳市埃科润滑材料有限公司
售全国
- 我要询价 联系方式

- 阻尼油,阻尼脂,阻尼器阻尼油
- 国内 广东
- ¥100
-
深圳市埃科润滑材料有限公司
售全国
- 我要询价 联系方式

- 阻尼油,阻尼脂,阻尼油脂
- 国内 广东
- 面议
-
深圳市埃科润滑材料有限公司
售全国
- 我要询价 联系方式

- 光学仪器阻尼脂
- 国内 广东
- ¥1
-
深圳市埃科润滑材料有限公司
售全国
- 我要询价 联系方式

- 三角琴摇盖阻尼脂
- 国内 广东
- ¥269
-
深圳市埃科润滑材料有限公司
售全国
- 我要询价 联系方式
座椅阻尼器阻尼脂问答
- 2021-09-13 16:59:30模拟人体进出座椅试验台操作步骤
- 模拟人体进出座椅试验台采用气动伺服控制方式控制试验负荷、位移、角度,用于汽车座椅颠簸、蠕动耐久试验。 主要特点: 1、界面采用虚拟仪器技术。 2、试验参数设置方便。 3、可实时打印数据结果。 4、负荷,位移标定方法简单,容易操作。 5、测控系统采用模板化设计,维护简单。 6、具有过载保护,软件设定保护。 操作步骤: 1.准备一个三维假人模型的压头,三维假人模型按照SAE J826-2002的50%假人; 2.压头包一层12mm的泡沫和牛仔布,把适当的重物配置到压头上,使压头保持重量在44.5KG; 3.把座椅总成固定在模拟人体进出试验台上,座椅调整到设计的位置,模拟人体进出座椅国际编制机器人的运行程序: ①.压头水平滑入座椅并陷入坐垫边翼和靠背边翼各约25mm,压头旋转30度使压头后部内侧先进入; ②.压头继续进入知道压头中心线和座椅中心线对齐; ③.压头蠕动使之在座椅内平稳; ④.压头陷入座椅直到负载为445N; ⑤.压头约30度,445N载荷蠕动靠背; ⑥.压头以445N负载停留在座椅直到一半移出座椅; ⑦.一旦压头一半移出座椅,就他随座垫边翼而滑动,压头移出时,座椅边翼有较大压陷。 4.实验频率:4.5次/min; 5.实验次数:15000次模拟人体进出实验。
352人看过
- 2023-05-25 16:47:05【ALP-TS-23008A】脂质纳米粒制备及表征解决方案
- 全文共3826字,阅读大约需要12分钟脂质纳米粒简介脂质纳米粒(Lipid Nanoparticle,LNP)是一种粒径介于 10-1000 nm 的新型药物递送载体,由多种有机材料、无机材料、金属 - 有机框架或这些材料组合而成,可作为化学与生物制剂之间传递的媒介,脂质纳米粒包裹药物可显著提高药物的稳定性与生物利用度。[1]目前脂质纳米粒广泛应用于mRNA疫苗递送、肿瘤治 疗、抗 炎和抗感染药物载体、治 疗神经退行性疾病、抗疟等领域。脂质脂质纳米粒可分为固体脂质脂质纳米粒(Solid Lipid Nanoparticles,SLN)和纳米结构脂质载体(Nanostructured Lipid Carriers,NLC)。固体脂质脂质纳米粒(SLN)主要是由固体脂质、表面活性剂、有效成分和水制备的胶体颗粒,具有生物相容性好、有机溶剂使用少、体内稳定性高、应用范围广等优点。但在储藏过程中仍存在载药量低、易凝胶化和药物泄漏等问题;为此,研发人员尝试在固体脂质壁材中加入一定量的液体油脂,打乱了原来单纯固体脂质壁材的有序的晶体结构,负载活性成分的量得到了提高,也使得晶体结构更加稳定,不易发生泄露等现象。[2-3]图1 LNP的结构[3]脂质纳米粒靶向性研究是药物递送热点研究方向之一,考虑到纳米药物自身性质的影响,可通过对其自身物理化学性质进行调控,如粒径、表面电荷、表面修饰物等,以此来增加脂质纳米粒药物的渗透作用。目前还开发了各种粒径可调控的纳米递药系统,Li 等[4,5]构建了一种酸刺激响应型脂质纳米粒,可以在低 pH 条件下将其粒径从 100 nm 缩减到5 nm。脂质纳米粒的初始尺寸有利于长时间的血液循环,当到达肿瘤部位后,酸性环境刺激脂质纳米粒发生结构变化,粒径缩小,有助于脂质纳米粒外渗和组织渗透。除 pH 响应外,肿瘤组织处特异的酶环境、肿瘤细胞内的还原环境和光、热、磁等外部刺激都可以用于调控纳米药物的粒径和表面电荷。[5]除平均粒径外,脂质纳米粒的尾端大颗粒和过小颗粒也会影响纳米药物的效果,尾端大颗粒容易造成脂质纳米粒聚集,影响药物的稳定性和安全性,小颗粒(<5nm)会被直接脏快速地过滤清除,影响药物的有效性。过滤可有效减少脂质纳米粒药物中的大颗粒和杂质,提高脂质纳米粒药物的稳定性。Alpharmaca奥法美嘉平台提供整套的脂质纳米粒均一性和稳定性的解决方案,可用于快速评估、优化脂质纳米粒的配方和工艺:高压微射流均质机、微流控技术对脂质纳米粒进行均质乳化分散处理、Nicomp粒度分析仪分析平均粒径、AccuSizer颗粒计数器分析大粒子浓度,Lum稳定性分析仪快速分析脂质纳米粒药物稳定性,Entegris-ANOW滤芯过滤杂质及大颗粒。脂质纳米粒的制备技术传统的脂质纳米粒制备技术,包括乙醇注入法、薄膜分散法、逆向蒸发法、冻融法等,存在粒径分布广和批间重复性大等问题,对药物开发的临床试验和生产具有很大的影响。为了解决传统制备方法的弊端,微流控混合技术、高压微射流技术、高压均质等新型制备技术应运而生。高压微射流制备方法:制备水相、油相,经过混合、剪切步骤形成初乳,初乳经微射流均质机均质,而后除 菌过滤得到脂质纳米粒。微流控混合技术制备方法:制备水相、油相,将水相油相经过微流控均质乳化后,除 菌过滤得到脂质纳米粒。无论是通过何种方法制备脂质纳米粒药物,后续都需要对其平均粒径、尾端大颗粒、稳定性进行检测来筛选配方,PSS的Nicomp粒度分析仪可用于测试平均粒径、AccuSizer颗粒计数器可用于测试大颗粒浓度、Lum稳定性分析仪可用于快速筛选在不同工艺制备下脂质纳米粒药物的稳定性。图2 高压微射流法制备脂质纳米粒图3 微流控混合技术法制备脂质纳米粒脂质纳米粒的粒径控制脂质纳米粒的粒径与其靶向性和有效性紧密相关,粒径小且分布窄是脂质纳米粒药物的理想粒径。微流控技术通过微米通道控制流体的流动和混合,具有良好的单分散性、可控性及重现性,可改善脂质纳米粒的均一性和药物包封效率,并实现高通量生产,已成功应用于Covid-19 mRNA 疫苗的制备[6]。高压微射流均质技术使物料在高压作用下以高速度流经腔体,经过剪切、碰撞、空穴效应等物理作用降低脂质纳米粒的平均粒径,可对脂质纳米粒初乳进一步均质分散。高压微射流均质机PSI-20高压微射流均质机(小试兼中试型)采用固定结构的均质腔,通过电液传动的增压器使物料在高压作用下以极大的速度流经交互容腔的微管通道,物料流在此过程中受到高剪切力、高碰撞力、空穴效应等物理作用,使得平均粒径降低、体系均一稳定,由此获得理想的均质、分散、去团聚的结果。图4 PSI高压微射流均质机最 高2069 bar的均质压力,最 高处理量20L/h(PSI-20)采用特殊设计Y型腔,去除尾端大颗粒效果佳,物料的混合更均一,处理效率高。屏显界面,数据可溯源:支持数据导出设定压力及实时压力、监测点温度、实时流量、时间等。配置K型热电偶:可用于实施监测料液温度。低噪音:运行音量低于70分贝,工作环境友好型。NanoSpirit 系列微流控药物制剂递送平台微流控制备系统通过制造泵和高压输送泵与微流控芯片连接。A相和B相可以按一定比例以恒定速度混合和乳化。在微流控芯片中,设计不同的流道结构,控制不同的速度,使样品在微流控芯片中湍流、层流或雾化,可以满足预乳化或再乳化的要求。还可以将制备好的样品通过高压泵输送到高压微流控芯片中,通过冲击力和剪切力控制粒径,达到达到所需的包封率、粒径、粒径分布均一性等要求。图5 NanoSpirit 系列高精度流量控制(<5‰)。可提供多项可调参数( 反应量、流速等)。多型号微流芯片通用,适合多种载体类型。注射器规格:0.25,1,2.5,5,10 ml。自动充液、反应、前后排废、清洗等工能平均粒径与Zeta电位检测脂质纳米粒径不同使药物富集在不同部位可现不同治 疗 效果。应用于肿瘤治 疗领域的脂质纳米粒,由于肿瘤组织处血管丰富,血管壁间隙较宽且结构完整性差,具有适宜尺寸的脂质纳米粒(60-200 nm)可通过 EPR 效应在肿瘤处积聚,实现纳米药物的被动靶向。脂质纳米粒电性一般呈中性或轻微负电性,在血液循环中,高正电性的脂质纳米粒会吸附蛋白质,被迅速清除,进而影响脂质纳米粒的药代动力学和生物分布。相比之下,中性脂质纳米粒以及带有轻微负电荷的脂质纳米粒则显示出延长的半衰期。Zeta电位是衡量药物稳定性指标之一,Zeta电位的绝 对值越高,体系越稳定。Nicomp纳米激光粒度仪系列Nicomp系列纳米激光粒度仪采用动态光散射原理检测分析样品的粒度分布,基于多普勒电泳光散射原理检测ZETA电位。图6 Nicomp 3000系列粒径检测范围0.3nm-10μm,ZETA电位检测范围为+/-500mV搭载Nicomp多峰算法,可以实时切换成多峰分布观察各部分的粒径。高分辨率的纳米检测,Nicomp纳米激光粒度仪对于小于10nm的粒子仍然显示较好的分辨率和准确度。图7 高斯粒径分布图 图8 多峰粒径分布图颗粒分布检测尾端大颗粒的存在会影响药物本身的稳定性,由于表面积增大,使得体系形成热力学不稳定体系,容易发生脂质纳米粒聚集以降低体系自由能现象。尾端大颗粒的存在还会对身体机能造成影响,较大的颗粒(> 200 nm)容易积聚在肝脏和脾 脏中,影响药物安全性;粒径极小(< 5 nm)的颗粒则会被肾脏快速地过滤清除,影响药物的有效性。AccuSizer颗粒计数器系列AccuSizer系列在检测液体中颗粒数量的同时精确检测颗粒的粒度及粒度分布,通过搭配不同传感器、进样器,适配不同的样本的测试需求,能快速而准确地测量颗粒粒径以及颗粒数量/浓度。图9 AccuSizer系列检测范围为0.5μm-400μm(可将下限拓展至0.15μm)。0.01μm的超高分辨率,AccuSizer系列具有1024个数据通道,能反映复杂样品的细微差异,为研发及品控保驾护航。灵敏度高达10PPT级别,即使只有微量的颗粒通过传感器,也可以精 准检测出来。可出具法规报告LumiSpoc单粒子颗粒计数器LumiSpoc采用单粒子光散射技术(SPLS),通过在光学流通池中进行流体动力聚焦,将单个粒子排列成一条直线。通过调整流动条件来调整样品浓度,从而避免浓度峰值的影响。当单个纳米或者微米颗粒经过特殊光束截面的激光束时,记录其正向和侧向散射的光强。根据米氏理论,将分类强度转换为粒度分布密度。通过软件分析显示计数分布、颗粒浓度。在行业内已有使用Lumispoc用于颗粒浓度的监测成功案例。图10 LumiSpoc单粒子颗粒计数器颗粒粒径检测范围:50 nm ~ 8 µm(取决于样品)颗粒浓度检测范围:1 × 106 ml-1 ~ 1 × 109 ml-1进样体积:250 μl稳定性分析检测稳定性是评价药物制剂质量的重要指标之一,也是确定药物制剂使用期限的主要依据。药物制剂若发生分解、变质,可导致药效降低,甚至产生或增加毒副作用,危及患者的身体健康和生命安全,Zeta电位、尾端大颗粒浓度都是衡量药物稳定性的指标之一。除此之外,还可以使用稳定性分析仪测量样品的分离、沉降、悬浮或澄清、浮离、聚集、凝聚或产品存放期以及粒径分布。LUM稳定性分析仪Lum稳定性分析仪可以直接测量整个样品的分散体的稳定性,检测和区分各种不稳定现象,如上浮、絮凝、聚集、聚结、沉降等,通过测量结果可用来开发新的配方和优化现有的配方及工艺。图11 LUM稳定性分析仪快速、直接测试稳定性,无需稀释,温度范围宽广可同时测8个样品,测量及辨别不同的不稳定现象及不稳定性指数加速离心,最高等效2300倍重力加速度过滤经高压微射流均质机或微流控技术处理的脂质纳米粒,还需进行适当的过滤工艺,用于去除脂质纳米粒药物中的尾端大颗粒和杂质,提高药物的稳定性和安全性。滤膜的材质和型号将影响脂质纳米粒药物的过滤效率和效果,综合考虑膜与纳米药物配方的兼容性、成本、效率等多方面因素选择合适的滤膜。Entegris滤芯Entegris-Anow是一家高分子微孔膜过滤企业,专业从事MCE、Nylon、PES、PVDF、PTFE等(膜孔径为0.03μm~10μm)微孔膜的研发及生产,具有二十多年服务与医药客户经验,并为全 球生物制药、医疗器械、食品饮料、实验室分析、微电子及工业等领域的客户提供过滤、分离和净化解决方案。
301人看过
- 2022-12-26 12:55:446种脂溶性维生素的快速检测方案
- 维生素是维持人体生命活动所必需的一类营养物质,大多数由食物供给,属于人体内的一类调节物质。维生素分为水溶维生素和脂溶维生素,脂溶性维生素是不溶于水而溶于脂类的一类维生素,在人体生长、代谢、发育过程中发挥着重要作用,包含维生素A、维生素D、维生素E和维生素K。VD在肝脏可转化为25羟基维生素D(25OH-VD),其浓度水平与体内的VD直接相关,因此体内25OH-VD2、25OH-VD3可作为检测VD水平的生物标志物。VK是激活凝血因子以及蛋白质C和S的必须辅助因子,目前已知主要有K1、K2、K3、K4几种形式,四烯甲萘醌VK2(MK4)既是VK2的家族成员,也是肝外组织中K1的代谢物。当这些脂溶性维生素缺乏或过量时均会对人体造成伤害。具体见下表:一次性评估体内多种维生素水平,才能全面“查漏补缺”。准确测定人体中性维生素的含量,可以帮助临床医生准确评估人体维生素营养状态、吸收障碍或毒性水平。解决方案沃特世团队依托质谱平台ACQUITY UPLC I-Class Xevo TQ-S IVD和 TQ-XS IVD开发了超高效液相色谱-串联质谱(UPLC-MS/MS)技术在维生素检测中的应用,在5 min内即可完成6种脂溶性维生素的同时分析。前处理采用Andrew Alliance机器人搭配Oasis μElution PRiME HLB的固相萃取板,实现样本前处理自动化,并解决LC-MS/MS检测维生素的各种挑战和难点。该方法检出限低、分离效果好、稳定性佳,可满足临床高通量自动化检测需求。图1. Andrew+移液机器人用于6种脂溶性维生素前处理操作时的工作台布局,以及ACQUITY UPLC I-Class Xevo TQ-XS IVD检测平台。实验部分 前处理样本预处理:取100 μL 血清或者BSA稀释标准品,加入内标工作液,涡旋混匀,随后加入乙腈沉淀蛋白,离心取上清液,做SPE净化。 液相色谱条件液相色谱系统:ACQUITY UPLC I-Class系统色谱柱:ACQUITY UPLC BEH C18色谱柱, 1.7 μm,2.1 mm x 50 mm进样体积:5 μL结果与讨论 高通量,一针进样,同时检测该方案5 min内即可完成6种脂溶性维生素的同时测定,可同时检测血清中维生素A(VA)、25-羟基维生素D2(25OHVD2)、25-羟基维生素D3(25OHVD3)、维生素E(VE)、维生素K1(VK1)、四烯甲萘醌K2(VK2-MK-4),真正实现“一针进样,同时检测”。图2. 6种脂溶性维生素的标准品和血清色谱图。 灵敏度高,线性范围宽,满足临床检测需求正常人体血清中维生素A含量113 - 977 ng/mL;维生素E含量3.8 - 17 μg/mL;维生素D含量20 - 50 ng/mL;维生素K1含量为0.10 - 2.20 ng/mL。由于6种脂溶性维生素在血清中含量差异较大,VK1、MK4和25OH-VD2含量低,同时测定高低浓度物质是串联质谱测定的难点,常存在低浓度、灵敏度差及高浓度过饱和现象。而Xevo TQ-S IVD和TQ-XS IVD优异的灵敏度及超宽线性范围,可实现同时准确定量这几种维生素。自动化前处理,满足高通量检测需求Andrew+机器人可在无人值守状态下自动完成移液、震荡、混匀和96孔板SPE前处理过程。不仅大幅节省了样品处理的时间,提高了通量,还可以简化样品制备过程、减少实验失误,从而确保分析结果的稳定重现。手动前处理96个样本的时间大概是2 - 3 h。如果用Andrew+做自动化前处理,只需要提前把溶剂和样本放到设置好的Domino blocks里中就可以完成自动化前处理和SPE流程。过程仅需不到1 h就可以完成。结论本方案使用Waters UPLC I-Class超高效液相色谱系统搭载UPLC色谱柱进行分离,再用Xevo TQ-S IVD和TQ-XS IVD串联四极杆质谱仪对血清样品中6种脂溶性维生素定量检测。96个样本的前处理不到1 h,每个样本的液相分析时间仅5 min,每天可以检测至少200例样本。6个脂溶性维生素的加标回收率85% - 115%之间,精密度RSD
354人看过
- 2023-02-17 13:16:01核酸脂质纳米粒科普——RNA-LNP包封率测定
- 自新冠mRNA疫苗成功上市以来,脂质纳米粒(Lipid nanoparticle,LNP)已成为mRNA、siRNA、pDNA等核酸的优先递送载体,广泛用于mRNA疫苗及治愈。微流控技术是目前制备核酸脂质纳米粒常用的技术,包封率则是评价其制备效果的重要指标之一,下面就为大家介绍使用RiboGreen测定RNA-LNP包封率的方法。1 RiboGreen检测RNA-LNP包封率的原理1.1RNA-LNP包封率(Encapsulationefficiency,EE):包裹在脂质纳米粒内部的RNA占RNA-LNP溶液中全部RNA的比例。1.2 RiboGreen检测RNA原理:RiboGreen是一种用于定量检测溶液中RNA含量的超敏感荧光核酸染料,当RiboGreen荧光染料处于溶液状态时,几乎没有荧光活性,与RNA结合时,其荧光活性将增加1000倍。RiboGreen-RNA复合物的荧光激发波长约500nm,发射波长约525nm,通过酶标仪,建立已知浓度RNA的标准曲线,即可得到样品RNA浓度。1.3 RiboGreen检测包封率原理:分别测定LNP-RNA溶液中游离RNA浓度,以及用Triton-100破坏LNP结构后,溶液中全部的RNA浓度,两者的差值就是包封在LNP内部的RNA浓度。通过以下公式即可计算得到包封率结果。图1核酸脂质纳米颗粒的示意图2操作要点2.1制备Buffer1X TE Buffer:使用试剂盒中20X TE Buffer稀释。2% Triton-TE buffer:使用Triton-100与1X TE buffer以体积比1:50配制。2.2添加RNA-LNP样品至全黑96孔板根据制备时RNA的量,可以大致计算需要稀释的倍数。例如,已知 mRNA的原始质量或浓度,使用铭汰MicroFlow S进行RNA-LNP合成,根据稀释、超滤等处理后的最终体积,即可估算大致总RNA浓度。同时,假设90%的包封率,即可估算游离RNA浓度。然后根据标曲的浓度计算需要稀释的大致倍数。这样我们就可以使用1X TE buffer将RNA-LNP稀释适合倍数以检测LNP外游离RNA浓度,使用2% Triton-TE buffer将RNA-LNP稀释适合倍数以检测总RNA浓度,建议每项检测至少两个不同稀释倍数。然后,分别移取100 μL稀释后的样本,添加到全黑96孔板。2.3标样添加一般直接使用试剂盒中100 μg/mL的RNA标样,也可以使用与待测样本类似的RNA标样来建立标准曲线。可以先用1X TE buffer将原始标样稀释到工作浓度4 μg/mL,然后参考表1的体积比,配制为一定浓度梯度的标样。分别移取各浓度的标样100 μL,添加到全黑96孔板中。注:*最终RNA浓度考虑了步骤2.4添加RiboGreen染料后的浓度当RNA-LNP样品及特定浓度的标样添加到96孔板后,需要在37℃下避光孵育10 min,以使RNA-LNP在Triton buffer中充分裂解。2.4 RiboGreen染料添加把试剂盒中RiboGreen试剂,使用1X TE Buffer按照1:100的比例稀释,例如需要2000 μL RiboGreen染料,可将20 μL的RiboGreen试剂添加到1980 μL的1X TE Buffer中。然后各取100 μL加入到已经加有样品的96孔板中,37℃下避光孵育5min。图2 样品添加2.5酶标仪检测打开酶标仪,选择荧光模式,激发光485nm,发射光528nm,读数,记录数据。 2.6数据处理及分析 将每个样本测得的荧光值减去空白荧光值,即可得到实际荧光值。根据标样的荧光值和浓度梯度,绘制标准曲线,得到回归方程。把样品荧光值代入回归方程,乘以稀释倍数,即可得到样本的RNA浓度。根据1.3中包封率公式计算得到包封率结果。图3 标准曲线3 小结准确的包封率测定对于评价RNA-LNP的包封效果至关重要,影响着后续细胞实验和动物实验的开展。RNA-LNP包封率测定一般使用商业化的试剂盒,虽然操作环节较多,但只要细心规范,操作起来也并不难,相信大家可以得到准确的实验结果。纳米药物制备系统应用范围:
1114人看过
- 2021-09-22 17:03:25理想one座椅支架生锈带来的防锈油涂敷和防腐蚀试验思考
- 近日,“理想ONE再被拆车:座椅支架生锈 理想:非质量问题,蔚来特斯拉也一样”一则新闻被刷屏。7月27日,知乎“拆车实验室”拆了款2021款的理想ONE座椅,该车买回来仅有两天时间,为全新商品车。拆车后,新车的座椅的铁质支架上存在大面积锈蚀痕迹。直播拆车发现座椅支架大面积生锈对此,7月29日,理想汽车相关负责人表示,首先这个不影响质量,所以不是质量问题。另外,理想汽车座椅供应商采用了与大部分国内国际品牌一样的生产流程。他指出,大部分座椅都会出现这种情况,不在少数。设计上,座椅部分属于车内的干区,一般不会做电泳。当钢板保护油被磨掉,就会出现锈蚀,“你拆蔚来、特斯拉、雷克萨斯也是一样的。”知乎上,一位答主指出,座椅骨架可以做防锈处理,最常规的是电泳。一般而言,滑轨、支架和座盆骨架都会做电泳,而靠背骨架部分,有很多厂商是不做的(也视车型定位),这是很正常的情况。在模拟车内进水的使用情况下,水漫到座盆部分,不会淹到靠背部分。日常情况下,骨架轻微生锈不影响使用,开到车报废都没问题。绝大多数用户终其一生都不会跟座椅骨架打照面,所以从成本角度考量,这是可以省掉的。汽车金属裸板件在正常室温、常见湿度条件下,3-7天就开始生锈。零件在加工过程中接触到酸性的切削液会加速腐蚀,员工搬运拿取时的汗液也可能导致生锈。防锈油一般用于短期存储,会挥发。要防锈,可以替换成惰性金属或合金;已形成氧化膜的材质,比如铝;或是表层镀膜、镀漆或不易生锈的金属,但这些都是有成本的。他表示,主机厂对消费者看不见的地方,往往会放松一些质量要求,比如座椅,正常消费者谁会拆座椅呢?《汽车车身铝合金板材复合涂层加速腐蚀试验方法》一文中对于金属板材的腐蚀方法有比较详细的描述,读者可以点击获得。一方面,整车厂家以及对应的各级供应商需要知道自己涂层防腐蚀的效果,另外一个方面,大家也应该知道每个金属板在开板后涂料还是否附着,Kurabo 2100IB是一款便携式的防锈油、钝化膜涂层监控设备,通过精确测量金属表面涂料的吸光度值,来准确判断其厚度/克重或单纯的有/没有。
500人看过

