- 2025-01-21 09:33:16心理测试综合评估系 统
- 心理测试综合评估系统是一种集成了多种心理测试工具与评估方法的软件系统。它通常包含性格测试、心理健康评估、情绪状态检测、认知能力测试等多个模块,能够全面、客观地反映被测者的心理状态。该系统采用标准化测试题目与智能化评估算法,确保测试结果的准确性和可靠性。通过心理测试综合评估系统,专业人士可以高效地进行心理诊断、咨询与治疗,为个人成长、企业选拔及教育辅导等领域提供科学依据。
资源:1626个 浏览:27次展开
心理测试综合评估系 统相关内容
心理测试综合评估系 统产品
产品名称
所在地
价格
供应商
咨询

- Motor Sky I MS-Smart无人机倾斜摄影系 统
- 国内 上海
- 面议
-
上海沪敖信息科技有限公司
售全国
- 我要询价 联系方式

- 半导体快速温变评估箱
- 国内 广东
- ¥78000
-
东莞市皓天试验设备有限公司
售全国
- 我要询价 联系方式

- 心灵伙伴-心理课程
- 面议
-
上海泽泉科技股份有限公司
售全国
- 我要询价 联系方式

- 心理实验设计软件E-Prime
- 国内 上海
- 面议
-
赢富仪器科技(上海)有限公司
售全国
- 我要询价 联系方式

- SI-9300R电池评估系统
- 国外 欧洲
- 面议
-
阿美特克商贸(上海)有限公司
售全国
- 我要询价 联系方式
心理测试综合评估系 统问答
- 2025-09-25 12:45:22细胞培养监测系统由什么构成
- 细胞培养监测系统在现代生命科学和生物制药行业中扮演着至关重要的角色。随着生物技术的不断发展,细胞培养的规模日益扩大,流程日趋复杂,传统的监测手段已难以满足高效、管理的需求。一套完整的细胞培养监测系统由多个关键组成部分构成,涵盖硬件设备、软件平台以及各类传感器与数据接口。这些组成部分协同工作,确保细胞培养环境的稳定性和安全性,提高实验的可重复性和数据的可靠性。本文将详细介绍细胞培养监测系统的主要构成,帮助相关从业者深入理解其设计原理和工作机制。 硬件设备是细胞培养监测系统的基础。包括环境控制单元、传感器、采样装置以及数据采集硬件。环境控制单元主要负责调节培养箱内的温度、湿度、二氧化碳浓度等关键参数,以模拟和维持细胞所需的生长环境。传感器则实时监控这些参数的变化,比如温度传感器、湿度传感器和气体传感器。这些传感器安装在培养箱内部,确保数据的即时采集与反馈。采样装置则用于取样检测细胞状态,如细胞密度、pH值、溶氧量等指标。数据采集硬件则负责将传感器采集到的数据转化为数字信号,并传送到控制系统或云端进行存储与分析。 软件平台是监测系统的核心操作界面。现代细胞培养监测系统配备基于云端的管理软件,提供可视化界面,方便操作人员实时查看各项参数。软件功能涵盖数据监控、报警通知、历史记录和数据分析。实时监控功能能即时显示培养环境的状态变化,使操作人员能快速应对突发状况。报警通知模块会在参数超出预设范围时,主动通知管理人员采取措施,有效防止细胞培养灾难。历史记录功能保存了每个时间点的监测数据,为后续分析和优化提供依据。通过大数据分析,软件帮助科研人员找出影响细胞生长的关键因素,优化培养条件。 传感器的多样性与度对系统性能影响至关重要。常用的传感器包括温湿度传感器、气体浓度传感器、pH传感器、溶氧传感器和细胞形态识别传感器。现代传感器趋于高精度、快速响应、稳定性强,确保数据的真实性和可靠性。在高端应用中,还可能集成成像系统,利用显微镜或自动图像分析设备监测细胞形态、细胞周期等细节,为实验提供更全面的监控手段。 数据传输和存储也是组成部分中的重要环节。一般采用有线或无线连接技术,将采集到的数据实时传输到处理单元或云平台。安全性方面,数据加密与权限控制成为保障数据隐私和系统安全的关键措施。系统应具备数据备份与恢复能力,确保在突发状况下,数据不会丢失影响后续的分析。 系统的维护与集成能力也影响整体性能。一个成熟的细胞培养监测系统应具备易于扩展和升级的设计,能够与自动化设备、实验室信息管理系统(LIMS)无缝集成。维护简便、设备可靠性高,能确保长时间稳定运行。培训操作人员正确使用设备和软件,也是保证系统有效性的重要环节。 细胞培养监测系统由硬件设备、软件平台、传感器、数据传输与存储设备以及维护支持等多个组成部分构成。每一环节都关系到培养环境的稳定性和数据的准确性,为生命科学研究和生物制药提供技术保障。随着技术不断创新,未来的细胞培养监测系统将更加智能化、集成化,为行业带来更多革新与突破。专业的系统设计与完善,将极大推动细胞培养技术的发展和应用价值的提升。
51人看过
- 2026-01-08 14:30:25空气质量监测系统由什么构成
- 空气质量监测系统在现代环境保护和大气污染治理中发挥着至关重要的作用。随着城市化进程的加快和工业化的发展,空气中的污染物逐渐增加,威胁着居民健康和生态系统的平衡。为了实现对空气质量的科学监控和及时预警,各类空气质量监测系统应运而生。本文将详细介绍空气质量监测系统的组成结构,从传感器设备到数据处理,再到信息传输与分析,全面剖析其各个关键环节的功能与作用,为相关行业提供有价值的参考。 空气质量监测系统的核心组成部分包括传感器阵列、数据采集模块、处理单元、通信网络以及数据存储与分析平台。这些部分紧密配合,确保系统能够高效、准确地获取空气中的污染物信息。传感器阵列是监测系统的基础,负责实时检测空气中的颗粒物(PM2.5、PM10等)、气态污染物(如二氧化硫、氮氧化物、一氧化碳、臭氧)以及其他关键参数。不同类型的传感器具有不同的检测原理,比如光散射法、化学传感法和光离子传感法等,选择合适的传感器是确保监测数据可靠性的前提。 在传感器采集数据之后,数据采集模块负责将原始信号转换为数字信息,并进行初步处理。这一环节通常包括模/数转换、信号滤波和校准,目的在于提高数据的准确性和稳定性。处理单元(如嵌入式处理器或微控制器)会对监测数据进行实时分析和存储,识别污染物超标情况,甚至在必要时触发报警机制。为保证数据的连续性和安全性,监测系统还配备了稳定的能源供给和备份措施。 作为连接系统的纽带,通信网络确保监测数据能够实时传输到远端服务器或云端平台。多种通信技术可被采用,包括蜂窝网络(如4G、5G)、 LoRaWAN、NB-IoT和以太网等,根据监测范围和实时性需求选择佳方案。高效的通信架构不仅缩短了数据传输延迟,也使得远程监测和管理成为可能。这种实时监控能力对于城市环境治理、工业排放监管及突发空气污染事件的应对极为关键。 在数据传输至数据存储与分析平台后,更深层次的处理工作开始展开。先进的数据分析平台结合大数据和人工智能技术,能够对历史空气质量数据进行比对,识别污染趋势,预测潜在污染风险。这一过程支持环境决策者制定科学的治理策略,同时为公众提供透明、可信的空气质量报告。数据显示、可视化界面和预警通知等功能,让用户在极短时间内掌握空气状况,采取有效行动。 空气质量监测系统的设计还涉及到环境适应性和扩展性。例如,系统应能适应不同气候条件,保证在极端天气下的正常运行。模块化设计确保未来技术升级或扩展新的污染物检测能力时无需整体更换系统。综合考虑成本、维护性和数据精度,诸如智能校准、远程监控与维护等智能化功能不断引入,有效提升系统的整体性能和使用寿命。 总结来看,空气质量监测系统由多层次、多元化的组成部分共同构成:的传感器阵列、完善的数据采集和处理单元、可靠的通信网络及强大的数据分析平台。每个环节相辅相成,构建起一套高效、科学、可靠的空气质量监控体系。这不仅有助于政府和企业及时掌握空气污染动态,也为公众提供了透明、科学的环境信息指导。未来,随着技术不断发展,空气质量监测系统将在智能化、自动化和大数据应用方面迈出更坚实的步伐,为环境保护事业提供更有力的科技支撑。
57人看过
- 2023-02-15 14:27:47肿瘤疫苗生物学活性评估
- 肿瘤疫苗背景肿瘤疫苗,是一种具有预防和治 疗潜力的有吸引力的替代免疫治 疗选择,是近年研究的热点之一。针对肿瘤相关抗原(Tumor-associated antigen,TAA)或肿瘤特异性抗原 (Tumor specific antigen,TSA) 的疫苗可以特异性地攻击和破坏抗原过表达的恶性细胞,并由于免疫记忆而实现慢性治 疗反应。因此,与其他免疫疗法相比,癌症疫苗提供了特异性、安全性和可耐受的治 疗。根据肿瘤抗原的组分,癌症疫苗大致可以分为四种类型:基于 DNA 的疫苗,基于 RNA 的疫苗,基于多肽的疫苗和基于免疫细胞的疫苗。FDA 批准的首 个个性化肿瘤疫苗 PROVENGE (Sipuleucel-T) 是一种基于免疫细胞的疫苗,用于激素难治性前列腺癌的治 疗。除此之外,Moderna,BioNTech 都在布局基于 mRNA 的肿瘤疫苗。图 1 肿瘤疫苗抗原呈递平台示意图肿瘤疫苗有效性评估方法生物体接种疫苗后,肿瘤抗原被带到淋巴结,进而激活抗原特异性的 B 细胞和 T 细胞,活化的 B 细胞产生的抗体及活化的效应 T 细胞会使肿瘤内胀并诱导肿瘤细胞死亡。图 2 肿瘤疫苗诱导的免疫反应示意图如何有效的评估肿瘤疫苗的有效性是一个非常值得探讨的问题,常用的肿瘤疫苗有效性验证的方法,包括细胞因子检测、CTL 活性检测、T 细胞活化标志物检测、抗体滴度检测、ADCC 检测等。1、细胞因子检测细胞因子是由免疫细胞经过刺激而合成并分泌的小分子蛋白质,在免疫应答中起着非常重要的作用,因此可以通过细胞因子的分泌能力来反应疫苗诱导的细胞免疫的水平。常见的细胞因子有白介素 (IL) 、干扰素 (IFN)、 肿瘤坏死因子 (TNF) 等。下面比较了几种常见的检测方法。ELISA 是一种非常经典的细胞因子的检测方法,例如在王晓东等人发表的关于胃癌疫苗研究的文章中,提到了用 ELISA 的方法检测接种疫苗后小鼠骨 髓源树突状细胞(BMDCs)分泌细胞因子的能力,检测方法如下:BMDCs 在含有 10ng/mL GM-CSF 和 10ng/mL IL-4 的 X-vivo 15 培养基中培养,37℃下培养 6 天,然后以每孔 5×104 细胞的密度在 96 孔板中接种。以 5µM 或 10µM 的最 终浓度加入疫苗抗原,孵育 24 小时。使用小鼠 TNF-α 和 IL-12 p70 ELISA Ready-SET-Go 试剂组定量培养上清中的 TNF-α 和 IL-12 。首先在 4℃下用捕获抗体包被 ELISA 板过夜,然后在室温下依次加入阻断液、细胞培养上清和检测抗体,孵育 1h 。 最 后加入终止液和显色剂,用酶标仪 (BioTek) 在 450nm 处记录 OD 值。检测结果如下:从检测结果可以看出,T7(TLR7 激动剂)的存在可以显著提升 ML/MB 抗原诱导的免疫反应。图 3 ELISA 法测定小鼠骨 髓树突状细胞 (BMDCs) 分泌TNF-α (a) 和 IL-12 (b) 的水平Ankita Leekha 等人发表的关于 SRAS-COV2 疫苗文章中,提到了用 ELISPOT 的方法评估细胞因子的分泌水平,可以作为参考。具体方法如下:从小鼠中分离脾细胞和肺细胞,使用小鼠 IFNγ ELISpot 基础试剂盒和小鼠 IL4 ELISpot 基础试剂盒 (Mabtech, VA, USA) 进行 IFNγ 和 IL4 ELISpot 检测。在 37℃ 下,在预包被抗体的 ELISpot 板中,用抗原刺激脾细胞和肺细胞,培养 16-18 小时。第二天,洗掉细胞,加入生物素化的检测抗体。洗板后,加入 1:30000 稀释的 Extravidi-ALP 偶联物,室温孵育 1 小时。洗板后,每孔添加 70µL 显色液,孵育 20-30min,形成斑点,然后用水清洗,干燥。使用 Cytation 7 (BioTek) 对斑点进行量化。每个点对应一个单独的细胞因子分泌细胞。检测结果如下:图 4 ELIPSOT 方法检测小鼠脾细胞和肺细胞分泌细胞因子的水平2、CTL 活性检测疫苗诱导的细胞毒性 T 淋巴细胞 (CTL) 可以直接杀伤肿瘤细胞,起到抗肿瘤的作用,因此可以通过检测 CTL 的杀伤效应来反应疫苗的效果。常用的检测细杀伤效应的方法有很多,下表列举了一些常用的方法。王晓东等人发表的文章中提到了 LDH 检测,检测方法如下:从接种疫苗小鼠的脾 脏中分离淋巴细胞(效应细胞)。EAC 肿瘤细胞(靶细胞)与淋巴细胞(效应细胞-靶细胞比例为 50:1)共培养 4h,使用乳酸脱氢 (LDH) 法测定细胞毒性。将培养 4h 后的培养上清加入在 ELISA 板中,室温下加入底物溶液,孵育 30min。最 后,加入终止液终止反应,并用酶标仪 (BioTek) 在 490nm 处检测光密度。检测结果如下:相对于 PBS 对照组来说,T7-MB 组 CTL 细胞具有显著的杀伤效应。图 5 LDH 法测定 CTL 介导的 EAC 靶细胞的裂解水平3、抗体滴度及亲和力检测肿瘤疫苗除了可以诱导细胞免疫之外,也可诱导体液免疫,对此可通过对抗体滴度及亲和力进行检测来反应疫苗抗肿瘤的效果,ELISA 是一种非常经典的检测方法。上述关于胃癌疫苗的文章中通过 ELISA 方法测定小鼠接种疫苗后血清中总 IgG 含量,具体检测过程如下:小鼠接种疫苗后收集血液样本,通过 3000g 离心 15 分钟获得血清样本。ELISA 板预先在 4℃ 包被 BSA-MG1 过夜,然后在室温下依次加载封闭溶液 2h,血清样品 (1:50 稀释) 和检测抗体 1h。最 后,在体系中加入 p-NPP 底物 (Millipore) 和终止液,用酶标仪 (BioTek) 在 405nm 处记录 OD 值。检测结果如下:相对于 PBS 对照组来说,T7-MB 组抗体含量明显上升。图6 ELISA法测定疫苗诱导的血清抗体水平除此之外,在 Emily C. Gale 等人发表的关于 mRNA 递送系统及辅剂研究的文章中,通过 ELISA 的方法测定了 mRNA OVA 模式疫苗诱导的 OVA 特异性抗体的绝 对含量及其亲和力。具体检测方法如下:抗体浓度:小鼠接种加强疫苗后,采集血液样品,血清按照 1:100 000 进行稀释。采用 anti-OVA mouse IgG1 ELISA (Cayman Chemicals) 试剂,按照试剂厂家的说明进行 ELISA 实验。使用 Synergy H1 Microplate Reader (BioTek) 在 450nm 处记录 OD 值。根据标准曲线计算血清抗体浓度,表示 mg/mL。抗体亲和性:将 12 个梯度稀释的血清与恒定浓度标记 HRP 的 anti-OVA 抗体 (3nM) 混合,并在 OVA 抗原包被的板中室温孵育 2 小时,洗板后用 TMB 底物孵育,用 HCl 停止反应。测定 450nm 处的 OD 值。根据业内发现的单克隆抗体的共同亲和力,假设对照抗体的 KD 为 1nM 对实验组的 KD 值进行统计。这一假设仅影响报告的绝 对 KD 值,而不影响实验组之间的相对差异。检测结果如下:pIC 为双链 RNA 结构模拟物,图E中比较了可溶性的 pIC 和不同纳米颗粒递送系统诱导的绝 对抗体含量,从图 E 中可以看出 2B 递送系统诱导的 OVA 特异性抗体含量最 高。从F和G可以看出 2B 递送系统相对于可溶性 pIC 来说诱导的 IgG 亲和力也显著升高。图 7 pIC/PBAE NPs 增强体液免疫4、ADCC 检测疫苗诱导体液免疫产生的抗体能够捕捉目标抗原,阻断这个靶分子的功能,也可以引导其他免疫细胞(如巨噬细胞和自然杀伤细胞)杀死表达抗原的靶细胞,在肿瘤治 疗中,特别是血液肿瘤中,抗体依赖的细胞介导的细胞毒性作用 (ADCC) 起着关键作用,ADCC 常用的检测方法包括细胞活力检测、LDH 检测、工程细胞株、Delfia、RTCA、细胞成像检测等。王晓东等人发表的关于胃癌疫苗研究的文章中,提到了 LDH 方法检测 ADCC,检测方法如下:小鼠接种疫苗后,采集其血清样本(1:25 稀释),然后与 EAC 细胞(靶细胞)在 37°C 孵育 30min。使用小鼠 NK 细胞分离试剂盒从正常 BALB/c 小鼠中分离出自然杀伤 (NK) 细胞(效应细胞),与抗体标记的 EAC 细胞以效靶比 50:1 共培养 4 小时。采用 LDH 法 (Promega) 测定细胞毒性,检测方法与之前提到的 CTL 活性检测的方法一致。检测结果如下:相对于 PBS 对照组来说,T7-MB 组产生的抗体具有显著的杀伤效应。图 8 LDH 法测定血清抗体介导的 EAC 靶细胞的裂解水平肿瘤疫苗生物学活性检测解决方案推荐本文介绍了肿瘤疫苗活性检测的常用方法,包括细胞因子检测、CTL 活性检测、抗体滴度及亲和力检测、ADCC 检测等方法,涉及到了酶标仪、成像系统、流式、RTCA、洗板分液系统等设备。Agilent 细胞分析事业部可以从多个角度为用户提供从样品处理,到结果检测再到数据分析的全面解决方案。
315人看过
- 2025-10-27 15:45:24色谱在线监测系统由什么构成
- 色谱在线监测系统由什么构成 随着环境保护和工业过程监控的不断发展,色谱在线监测系统在水质检测、大气污染控制以及工业排放管理中扮演着日益重要的角色。它能够实时、地检测样品中的各种复杂成分,为相关行业提供科学依据,从而实现污染物的及时预警与控制。本文将详细阐述色谱在线监测系统的主要组成部分,从而帮助用户全面了解其核心构架与功能实现方式。 一、样品采集与预处理单元 色谱检测的步是样品的采集。在线监测系统配备先进的样品采集装置,确保样品代表性和连续性。常见的采样方式包括直接进样和间歇采样,依据监测需求而定。样品预处理则在此环节中实现,主要包括过滤、稀释、加热或冷却、化学反应等步骤,以确保样品适配色谱分析的要求。优秀的预处理系统能够有效减少样品中的干扰物,提高检测精度。 二、色谱分离模块 色谱分离是监测系统的核心环节。其主要组成涵盖色谱柱、载体气或液体、流动相以及相关控制设备。不同类型的色谱柱如气相色谱(GC)、液相色谱(LC)以及超高效液相色谱(UPLC)等,都具有自己的应用范围和优势。流动相的成分和流速调节可以优化分离效果。多样化的柱温控制和压力调节技术,有助于提高分离效率和重现性,确保复杂样品中目标物的有效分离。 三、检测分析单元 色谱分离后,检测单元负责对色谱峰进行定性和定量分析。常用的检测器包括火焰离子化检测器(FID)、电子捕获检测器(ECD)、质谱检测器(MS)及紫外吸收检测器(UV)等。每种检测器适配不同的分析目标。例如,质谱检测器提供极高的灵敏度和结构信息,广泛应用于复杂污染物的识别。检测器的选择和优化直接关系到监测系统的性能指标,如灵敏度、线性范围和检出限。 四、数据采集与处理系统 现代色谱在线监测系统配备先进的数据采集设备,将检测器输出的信号转化为数字信息。通过专用软件进行实时监控和数据分析,包括色谱峰的识别、定量计算、方法校正等操作。系统还能自动生成监测报告,进行趋势分析及异常预警。强大的数据管理和存储功能,有助于后续统计分析和合规报告的生成。 五、自动控制与通讯单元 为了实现连续监测与自动化操作,系统内置自动控制模块,包括流动相供应、温控、压力调节等。现代系统还支持多种通讯接口,如以太网、串口、无线网络,便于与远程监控平台连接。实时数据传输与远程维护,极大提高了系统的稳定性和管理效率。 六、支持设备与辅助配件 除了主要部件外,色谱在线监测系统还配备多种辅助设备,如环境过滤器、泵、电源管理单元以及报警装置,确保系统在各种环境条件下稳定运行。高品质的供给和维护设备可以延长系统的使用寿命,减少故障率。 总结 色谱在线监测系统由样品采集与预处理模块、色谱分离单元、检测分析部分、数据处理平台、自动控制系统以及众多辅助设备共同构成。这些核心组成保障了系统的高效、稳定和,满足不断提升的环境监管与工业分析需求。通过不断优化各部分设计及集成方案,色谱在线监测技术将在未来实现更高的监测效率与数据智能化,为环境保护和工业安全提供坚实保障。
60人看过
- 2025-12-16 18:00:55选对LIMS不踩坑!三大维度解锁性能评估秘籍
- 评估LIMS(实验室信息管理系统)软件性能,是实验室数字化转型的关键决策。为确保系统精准匹配核心需求,可从以下三大维度系统化考量:一、功能适配性:贴合业务,合规高效全流程覆盖:支持样本从登记、任务分配、检测、复核到报告生成与归档的全生命周期管理,实现闭环追踪。自动化与智能:具备自动数据采集、智能计算能力,减少人为误差,提升效率与数据可靠性。合规内嵌:内置ISO/IEC 17025、CNAS等标准要求,支持审计追踪、电子签名、防篡改机制,确保数据可溯、可审。智能报表:支持数据标签化、结构化处理,提供多维统计分析与一键生成合规报表,赋能管理决策。用户体验与扩展性:界面简洁易用,降低培训成本;支持与ERP、OA等系统集成,并具备模块化扩展能力,适配未来发展。二、技术架构:稳定可靠,灵活安全高兼容集成:支持与LIS、EMR及各类仪器设备无缝对接,打通数据孤岛,构建统一信息生态。弹性可扩展:采用微服务或低代码架构,支持模块化部署、按需扩容,适应高并发与业务演进。高等级安全:具备完善的权限控制与数据保护机制,保障数据完整性、保密性与可用性。三、服务能力:专业服务保落地,长期护航无顾虑LIMS的核心价值不仅体现在产品本身,更在于供应商提供的全周期服务支持。从项目部署上线到后期运维迭代,专业的服务体系能大幅降低实施风险,最大化提升系统使用价值。实施周期:重点评估供应商的部署效率与灵活配置能力,例如青软青之提供的基础标准软件包7天即可快速上线,各功能模块支持独立选购、按需升级,同时可根据实验室个性化需求提供定制化服务,兼顾实施效率与需求适配性。售后服务:需配备稳定、专业的售后支持团队,提供技术咨询、定期维护、需求迭代等全流程服务。青软青之高度重视用户体验,售后团队兼具深厚的实验室业务认知与扎实的软件实施维护技术,可通过售后热线、QQ等多渠道快速响应用户诉求;对于电话、邮件无法解决的问题,将派遣专业工程师上门服务。同时,为每家客户建立专属客服档案,由客服经理主动通过电话、公函、电子邮件、定期回访等方式跟踪服务,搭建畅通的信息反馈渠道,确保问题及时解决、系统持续优化。行业经验:优先选择具备丰富相关行业成功案例的供应商。这类供应商更熟悉行业核心痛点、合规要求及业务流程,能结合自身实践经验为实验室提供更贴合实际需求的解决方案,有效降低项目实施风险,提升系统适配精度与落地效果。
167人看过
- 产品搜索
- 制氧机氧气传感器
- 双螺杆式压缩机
- DLSDS20031
- 微机控制真三轴冻土试验机
- 电动加液器
- (2-羟基乙氧基)乙酸
- 心理测试综合评估系 统
- 气相色谱 检测pha
- 岩心制样机
- 豪华空气净化器
- 开山空气压缩机
- 大环臭氧发生器
- CB-8010 4-SDI
- 热导式氢气分析仪
- 氮气检漏设备
- 活塞转子泵和离心泵
- 三轴流变仪
- 心理测 试综合 评估系 统
- 水臭氧发生器
- ZKZMD-10
- 一体臭氧发生器
- 万通水分仪
- 手提式氧气发生器
- 薄层色谱自动成像
- ROCK岩石多场耦合试验系统
- 小型氢气发生器
- 节能型真空发生器
- 氮气加热装置
- 负压真空发生器
- 氢气探测器型号
- 冻土消融与冰冻模拟环境变化箱
- X衍射
- 喷油双螺杆压缩机
- 高效臭氧发生器
- 氮气冷却器
- 蒸气压测定器

