
- 2025-01-24 09:32:01高分辨率透射电子显微镜
- 高分辨率透射电子显微镜是一种高端科研设备,能够在原子尺度上观察材料的微观结构。它利用高能电子束穿透样品,并通过精密的电磁透镜系统放大成像,实现纳米级甚至亚纳米级的分辨率。该显微镜广泛应用于材料科学、纳米技术、生物学等领域,用于研究材料的晶体结构、缺陷、界面以及生物大分子的精细结构。其高分辨能力为科研人员提供了深入探究物质微观世界的“眼睛”。
资源:3748个 浏览:11次展开
高分辨率透射电子显微镜相关内容
高分辨率透射电子显微镜产品
产品名称
所在地
价格
供应商
咨询
- LVEM5台式透射电子显微镜
- 国外 美洲
- 面议
-
QUANTUM量子科学仪器贸易(北京)有限公司
售全国
- 我要询价 联系方式
- 透射电子显微镜-量子场发射透射电子显微镜 TH-F120
- 国内 安徽
- 面议
-
国仪量子技术(合肥)股份有限公司
售全国
- 我要询价 联系方式
- 透射电子显微镜 HT7700
- 国外 亚洲
- 面议
-
似空科学仪器(上海)有限公司
售全国
- 我要询价 联系方式
- 透射电子显微镜 H-9500
- 国外 亚洲
- 面议
-
似空科学仪器(上海)有限公司
售全国
- 我要询价 联系方式
- Tecnai™ 透射电子显微镜
- 国外 欧洲
- 面议
-
北京圣嘉宸科贸有限公司
售全国
- 我要询价 联系方式
高分辨率透射电子显微镜问答
- 2022-11-29 12:10:53海洋光学新一代高分辨率光谱仪HR2正式上线!!!
- 推陈出新海洋光学隆重推出新一代HR系列高分辨率光谱仪系列首 款HR2现已正式上线!分辨率?轻松拿捏!HR2是一款高分辨率科研级光谱仪全新的探测器超高的采集速度良好的热稳定性一如既往的便携小尺寸提供更高的分辨率和信噪比重 点特色高分辨率2098个有效像素点16-位 A/D分辨率 (65535 counts)能探测到更弱、变化更快的光信号提升杂散光控制高信噪比单次采集信噪比 380:1高速平均模式信噪比 25833:1超高的采集速度微秒级积分时间 1µs-1.5s优良的热稳定性温漂 0.06 Pixels/°C环境条件变化时有可靠光谱响应更广的动态范围单次采集动态范围 3000:1系统动态范围 2.46*108HR2系列在各大基础应用中表现良好特别针对吸光度测量表现十分优异搭配使用OceanDirect跨平台软件开发工具包快速实现多次板载平均并大幅加强信噪比!多种选择18款预配置多种可能性供您选择并支持定制版本为您量身打造适合您的款式---P.S. 若有配置问题欢迎随时来询问我们哦!应用广泛HR2适用于日常实验室使用也可以嵌入OEM仪器并集成到工艺流水线中LED/激光表征采集时间短,可直接测量无需附件仪器也不会饱和紫外/可见光吸光度吸光度极限值可到 2.5 AU还可应用于...半导体行业:等离子体监控生物制药、药品分析 (吸光度)分子诊断设备: RNA/DNA生物流体诊断设备您的想法就是我们的做法,您的需求就是我们的追求!心动不如行动,您还在等什么?快来联系我们一探究竟!
203人看过
- 2025-02-01 12:10:12显微镜偏光在哪看
- 显微镜偏光在哪看:如何正确观察偏光现象 在显微镜观察中,偏光现象的应用广泛,特别是在材料科学、矿物学和生物学等领域。了解如何通过显微镜观察偏光现象,对于科研工作者和相关领域的专业人士至关重要。本文将深入探讨偏光显微镜的工作原理,以及如何使用偏光显微镜来观察不同样本中的偏光现象,并为读者提供一些实用的技巧和建议。 1. 偏光显微镜的工作原理 偏光显微镜是通过使用偏光片来观察样品的偏振特性。偏光片通过限制光波的传播方向,使得光线只能沿一个特定的方向传播。当光线通过样品时,样品的结构、形态或组成物质可能会对光线进行旋转或偏折,这一现象即为偏光现象。通过对比未经过滤的自然光与经过偏光片过滤后的光,偏光显微镜可以有效地揭示样品内部的微观结构。 2. 显微镜偏光现象的观察方法 在使用偏光显微镜时,首先需要安装偏光片。这些偏光片一般位于显微镜的光路中,一个在光源位置,另一个位于物镜下方。调整偏光片的角度可以实现不同程度的光线偏振,进而影响观察到的样品效果。对于透明样品,偏光显微镜尤为有效,可以清晰地显示出样品的内部结构及其物理性质,如应力、晶体结构等。 3. 如何识别偏光现象 在显微镜下观察偏光现象时,样品会呈现出不同的色彩和对比度,这取决于样品的光学性质。观察时,通常需要旋转偏光片,以寻找佳的观察角度。在偏光显微镜中,偏光效应经常表现为样品表面的一些暗纹或色彩变化。通过这些变化,研究人员可以分析样品的组成物质、晶体结构及其物理特性。 4. 偏光显微镜的应用领域 偏光显微镜广泛应用于多个领域。它在矿物学中用于鉴定矿石的种类、分析矿物的结构;在材料科学中,用来研究材料的内应力和缺陷;在生物学中,偏光显微镜则常用于研究细胞结构和组织。偏光显微镜不仅能揭示常规显微镜无法观察到的细节,还能提供有关材料本质的重要信息。 5. 总结与建议 偏光显微镜在多个科研领域中具有重要的应用价值。了解其原理和使用方法,能够帮助专业人员更准确地观察和分析样本。在进行偏光显微镜观察时,正确的操作技巧和细心的调整偏光片角度是至关重要的,能够显著提高实验效果和观察精度。希望通过本文,您能对显微镜偏光现象的观察有更深入的理解,助力您的科研工作。 偏光显微镜是一项关键的技术手段,掌握其操作要领,能够帮助我们更好地研究微观世界。
36人看过
- 2025-02-01 09:10:16立体化显微镜名称是什么
- 立体化显微镜是一种用于观察微小物体细节的先进仪器,其主要应用于生物学、医学、材料科学等领域。在本篇文章中,我们将深入探讨立体化显微镜的定义、工作原理及其在不同专业领域中的重要性。通过对比其他类型显微镜,立体化显微镜展示了其独特的三维观察能力,使得在多个学科的研究中发挥着重要作用。 立体化显微镜的名称来源于其独特的三维图像呈现方式,这使得观察者可以通过立体视角对样本进行更精确的分析。与传统的光学显微镜不同,立体化显微镜通过两个物镜和两个目镜的配合,为观察者提供深度感和空间感,使得样本表面的微小细节得以更加清晰地呈现。这一特性使得它在医学诊断、电子显微学及精密工程中,尤其在活体观察和微观结构研究方面具有不可替代的优势。 除了在结构上展现三维效果外,立体化显微镜的成像质量也得到显著提升。它能够在不损害样本的情况下获得高清的图像,尤其是在对样本的表面结构进行高精度分析时,具有传统显微镜无法比拟的优势。立体化显微镜的光学系统通常包括多个透镜,具备较大的景深,能够清晰显示不同层次的细节。其应用不仅局限于基础的科学研究,也广泛应用于工业生产中,特别是在电子产品制造、质量控制及生物样本的精密检测等领域。 值得注意的是,立体化显微镜根据不同的观察需求可以配备不同的配件和功能。比如,荧光立体显微镜可以结合荧光标记物,以实现特定分子层次的观测;而数字化立体显微镜则可以将其观测结果实时传输到计算机,方便数据分析和存档。随着科技的不断进步,立体化显微镜的功能愈发强大,其在科研、教育及工业等多个行业的应用也日益增多。 立体化显微镜是一种革命性技术,凭借其的三维观察能力,成为多个专业领域中不可或缺的分析工具。在未来,随着技术的发展,立体化显微镜将在更广泛的领域中发挥更大的作用。
33人看过
- 2025-02-02 09:10:123d显微镜是不是体视镜
- 3D显微镜是不是体视镜? 在显微镜领域,许多人可能会混淆“3D显微镜”和“体视镜”这两个术语,认为它们是相同的设备。事实上,尽管它们都被用来观察物体的细节,但它们在工作原理、使用范围和成像方式上存在显著差异。本文将详细阐明这两种显微镜的区别,以帮助读者更清晰地了解它们各自的特点及应用场景。 3D显微镜的定义与特点 3D显微镜,顾名思义,是一种能够提供三维成像效果的显微镜设备。其主要功能是通过特殊的技术手段获取样品的三维结构。常见的3D显微镜有激光共聚焦显微镜和共聚焦扫描显微镜等,它们利用激光束扫描样品并通过探测反射光来重建物体的三维图像。这种显微镜的优势在于它能够精确测量物体的高度、深度等空间信息,广泛应用于生物学、材料科学以及工业检测等领域。 体视镜的定义与特点 体视镜(又称立体显微镜)则是一种可以通过双眼观察样品的显微镜,能够提供一定程度的立体视觉效果。它通过两个独立的光路系统,使观察者的左右眼分别接收到不同的图像,从而产生一种深度感。体视镜通常用于观察较大的物体或具有明显三维结构的样品,如电子元件、昆虫标本和植物样品等。它的放大倍率较低,通常在20倍到200倍之间,主要用于物体的粗略观察和简单操作。 3D显微镜与体视镜的区别 虽然3D显微镜和体视镜在名称上都涉及“立体”或“3D”概念,但两者的原理和应用场景截然不同。3D显微镜能够提供细致的三维重建图像,适用于高精度的微观分析,特别是在需要获取样品高度和深度数据时。相比之下,体视镜更侧重于观察物体的外部结构,适用于较大的样品或需要大视野的工作环境。 3D显微镜通常需要较高的技术支持,价格也相对较高,适用于实验室和科研机构。而体视镜则更加简便,使用范围更广,适合实验教学、工程检测等领域。 总结 3D显微镜和体视镜虽然都具有“立体”观测的特性,但它们的成像原理、用途和工作方式存在显著差异。3D显微镜提供了高分辨率的三维成像,适合细节分析,而体视镜则更适用于大范围的立体观察。了解这两者的不同,有助于在不同的应用场景中选择合适的显微镜设备。
21人看过
- 2023-06-26 11:48:37Picarro | 揭示印度半岛碳循环之谜:高分辨率贝叶斯反演揭示二氧化碳通量
- 印度半岛碳循环之谜The Mystery of the Indian peninsula's carbon cycle随着全 球气候变化的日益严重,CO2排放已成为人们关注的焦点之一。了解CO2通量的分布和变化对于制定有效的环境保护政策具有重要意义。传统的观测方法存在着精度低、时间和空间分辨率不足等问题,如何提高观测精度成为了研究的重 点。贝叶斯反演作为一种有效的数学方法,可以通过利用已知信息对未知参数进行推断,以揭示CO2通量的分布和变化。下面这篇论文的研究成果对于深入了解CO2通量的分布和变化,制定有效的环境保护政策具有重要的现实意义和应用价值,一起来看看!揭示印度半岛碳循环之谜:高分辨率贝叶斯反演揭示二氧化碳通量工业时代以来,二氧化碳(CO2)浓度增加了近50%,主要归因于人类活动,尤其是化石燃料的燃烧。CO2对人为辐射强迫具有重要贡献。就过去10年国家尺度CO2排放量而言,印度排名第三,占全 球总量的7%。印度上空大气CO2的季节性变化主要受季风动力学导致的植被生长和运输的季节性变化所控制。然而,印度大气中CO2摩尔分数的精确测量是有限的。基于此,在所附的文章中,来自印度的研究团队基于2017年-2010年印度半岛Thumba(8.5°N,76.9°E) ,Gadanki(13.5°N,79.2°E)和Pune(18.5°N,73.8°E)三个站点地面CO2高精度原位观测数据(Picarro G2401气体浓度分析仪)、用于反演的不同来源CO2先验通量(源自ODIAC的化石燃料排放、源自VPRM模型的大气-生物圈交换、源自GFED的野火排放、源自OTTM模型的海洋通量)、高分辨率拉格朗日粒子扩散模型FLEXPART(通过计算点、线、面或体积源释放的大量粒子的轨迹,来描述示踪物在大气中长距离、中尺度的传输、扩散、干湿沉降和辐射衰减等过程。该模式既可以通过时间的前向运算来模拟示踪物由源区向周围的扩散,也可以通过后向运算来确定对于固定站点有影响的潜在源区分布) ,通过贝叶斯模型反演了印度半岛的CO2通量。在本研究中,Picarro G2401气体浓度分析仪用于测量Gadanki和Pune站的CO2混合比。测量间隔为2.5 s。在Gadanki站,使用外置真空泵和聚四氟乙烯管,以约400 SCCM流速,从树冠上方离地面约13米的建筑物顶部将环境空气引入Picarro分析仪。在Pune站,Picarro仪器安装在一座高层建筑顶部,使用外置真空泵和Synflex Decabon管将离地面约15米的环境空气输送至分析仪。两台仪器都定期使用NOAA的气瓶进行校准。【结果】(a)Thumba、(b)Gadanki和(c)Pune每周测量(青色)和模拟(橙色)的CO2混合比的时间变化。(a) 先验通量,(b) 后验通量及其差异平均值。【结论】基于独立估计,印度半岛地区的CO2来源(3.34 TgC yr−1)比化石燃料和生态系统交换综合的来源略强。在季节尺度上,冬季、季风前、季风和季风后季节,印度半岛上空先验通量的通量修正分别为4.68、6.53、-2.28和4.41 TgC yr-1。该研究强调了使用贝叶斯法优化某个区域的地表CO2通量的重要性。强调在反演过程中需要考虑先前的通量不确定性和观测不确定性。反演实验中使用台站的CO2测量结果能够捕捉到印度半岛的足迹,有助于更好地限制反演中的通量。但也需要进行长期持续监测,以进一步降低估计通量的不确定性。扫描二维码查看原文
110人看过
- 产品搜索
- 原位液相透射电镜
- 高速原子力显微镜
- ZDKJ-B1型测温仪
- 索氏提取器的工作原理
- 便携式电子显微镜
- f200透射电镜
- 高温扫描电镜
- 球差矫正透射电镜
- 超快扫描电镜
- 碳点透射电镜
- 自动扫描显微镜
- IX-1000
- 隧道电子显微镜
- 隧道显微镜
- 扫描光学显微镜
- 冷冻扫描电子显微镜
- 开尔文探针显微镜
- 电子隧道显微镜
- 原位扫描电镜
- 线粒体透射电镜
- 双球差透射电镜
- 高分辨率透射电子显微镜
- stem透射电镜
- TEM透射电镜
- 透射式电镜
- 浮游菌仪
- 球差扫描电镜
- 电子隧道扫描显微镜
- 光学透射显微镜
- 扫描透射显微镜
- talos透射电镜
- 销售激光红外光谱仪
- 扫描电镜显微镜
- 蔡司透射电镜
- 背散射扫描电镜
- 冷场发射扫描电子显微镜