2025-01-10 10:52:21超快高温炉
超快高温炉是一种高效的加热设备,能在极短时间内达到高温状态,适用于材料科学研究、陶瓷烧结、金属热处理等领域。其特点包括升温速度快、控温精度高、炉膛温度均匀性好等。超快高温炉通常采用先进的加热元件和保温材料,确保高效能的同时也能实现长时间的稳定运行。此外,它还配备有智能化的控制系统,便于用户进行精确的温度设定和程序控制,满足各种复杂实验和工艺需求。

资源:11879个    浏览:16展开

超快高温炉相关内容

产品名称

所在地

价格

供应商

咨询

魔技纳米超快激光微纳加工中心
国内 山东
面议
魔技纳米科技有限公司

售全国

我要询价 联系方式
超快探测器 UPD 超快光电探测器
国外 欧洲
面议
上海屹持光电技术有限公司

售全国

我要询价 联系方式
超快探测器 UPD 超快光电探测器
国内 上海
¥25000
上海屹持光电技术有限公司

售全国

我要询价 联系方式
超快PMT
国外 欧洲
面议
北京先锋泰坦科技有限公司

售全国

我要询价 联系方式
厂家直销高温炉
国内 河南
面议
河南诺巴迪材料科技有限公司

售全国

我要询价 联系方式
2023-05-18 16:59:34全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快
全共线多功能超快光谱仪BIGFOOT     MONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT       全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:高精度激光扫描显微镜NESSIE      MONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。                  图2. 高精度激光扫描显微镜NESSIE        高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。        图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷 BIGFOOT+NESSIE应用案例:1. 高精度激光扫描显微镜用于材料表征      美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4.  (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022). 2.二维材料中激子相互作用和耦合的成像研究      过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022) 3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究      当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。黄迪教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学对于理解导致其形成的成对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)
211人看过
2022-07-26 16:08:05高温炉马弗炉选择技巧
高温炉马弗炉怎么选择呢?首先要确定客户使用的常用温度,所谓常用温度指的是长期工作温度,维持6-10个小时以上,甚至几天到几个㛑月。其次要确定客户的样品尺寸,合理的推荐炉膛尺寸。要根据客户的工艺,是否抽真空,是否通气氛,等等来推荐箱式炉、管式炉、气氛炉、坩埚炉。作为南阳市10多年的老厂家的销售员,期待您的联系和咨询 18403775787手机号微信号同号。
261人看过
2023-05-26 11:43:55全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快光学实验必备!
全共线多功能超快光谱仪BIGFOOTMONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:若您对设备有任何问题,欢迎扫码咨询!高精度激光扫描显微镜NESSIEMONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。图2. 高精度激光扫描显微镜NESSIE高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷若您对设备有任何问题,欢迎扫码咨询!BIGFOOT+NESSIE应用案例:01高精度激光扫描显微镜用于材料表征美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4.  (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022).02二维材料中激子相互作用和耦合的成像研究过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022)03掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制:(i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。美国德克萨斯大学奥斯汀分校李晓勤教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学研究对于理解导致其形成的配对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)若您对设备有任何问题,欢迎扫码咨询!
199人看过
2022-11-29 10:21:21动力电池应用 | 超快充(XFC)要求及开发策略
近来,尽管动力电池快充技术在快速发展,但充电时间,效率和寿命焦虑依然是全 球范围内使用电动车的主要焦虑。锂离子电池以高能量密度和长寿命成为电动车的主要能源。当前,有几种方式来控制快充条件下的电池健康状态。本文提出了充电协议的清晰分类,将快充协议分为功率管理协议,依赖于对电流,电压和电池温度控制的热管理协议,以及依赖于锂离子电池材料物理修饰和化学结构的材料层面的充电协议。并分析了每种快充协议的要求,优势和劣势。Fig 1 电动汽车(EV)研究路线图锂离子电池不同层级对快充的影响材料-电极-电池层级对快充的影响锂离子电池快充协议快充协议的目的是降低充电时间,优化效率和循环寿命,降低充电损失。消除大倍率充电和深度放电所导致的活性物质损失,电极表面的SEI膜重整,内部温度变化和减小容量损失。Fig 2 锂离子电池主要快充充电协议类型Fig 3主要快充协议的优势及劣势 恒电流恒电位充电协议CC-CV 作为传统的充电协议,其示意图如Fig 4 所示,即恒电流充到指定电位后,在截止电压下持续恒压充电至电流降低为0.1C 或0.01 C。CC-CV的主要问题是充电时间较长,且CV恒压过程会导致电池内部发生化学反应。Fig 4 恒电流-恒电位充电(CC-CV)示意图多步恒电流(MCC) 充电协议种类Fig 5 多步恒电流(MCC) 充电协议种类(a) 充电电流多步变换(b) 混合技术(HT) (c) 条件随机变化技术 (CRT)(d) 多步恒电流超快充技术 (ML MCC-CV)MCC充电协议是通过多步的变换的恒电流进行充电,作为目前最 具潜力的超快充技术,有利于缩短充电时间,同时降低电池的衰减和能量损失,并提高效率,降低产生的热,避免析锂和过充等,但是,MCC充电协议需要对电池内部的电路进行全面准确评估后才能有效进行开发。因此,MCC的开发需要直流和交流阻抗技术组合使用。热管理协议Fig 6 热管理协议恒温-恒压充电协议示意图热管理充电协议依赖于对环境温度和电池温度的控制,温度作为影响电池老化非常重要的因素, 一种新的快充协议基于恒温很恒压(CT-CV) 如Fig 所示。CTCV基于施加2C电流,然后电流指数衰减至1C ,当电压到达4.2V时,电流开始衰减至0.1C。为了维持温度恒定,采用PID进行温度控制。脉冲电流充电协议(PCC)Fig 7 脉冲充电电流示意图Fig 8 脉冲电流充电协议(a) 标准协议-固定占空比(b) 标准协议-变化占空比(c) 标准协议-衰减电流(d) 标准协议高-低电流变化(e) 不同的电压脉冲PCC 协议依赖于控制负载的循环,频率和充电脉冲的幅值等,PCC有利于缩短充电时间,低温条件下加热电池,抑 制锂析出,增加功率转换,有利于消除浓差极化。缺点是控制器要求极其复杂,难度很高。结论经过以上分析,功率控制协议,由于充电时间短,发热量低,效率高,避免锂析出等优势,成为目前锂离子电池快充最 具潜力的方法之一,由于其波形的复杂性,对于温度的监测,析锂的有效评价等以及锂离子电池内部等效电路的全面分析,对于所使用的开发设备提出巨大挑战。多步电流法及脉冲电流快充协议,测试设备需要具备以下能力。参考文献1. A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems,Future Transp. 2022, 2, 281–299.https://doi.org/10.3390/futuretransp20100152. Detection of Lithium Plating in Li-Ion Cell Anodes Using Realistic Automotive Fast-Charge Profiles, Batteries 2021, 7, 463. Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects, Adv. Energy Mater.2021, 11, 2101126, DOI: 10.1002/aenm.202101126
301人看过
2025-01-23 11:45:13胶质层测定仪咋关后炉
胶质层测定仪咋关后炉 在胶质层测定仪的使用过程中,设备的关闭操作是非常重要的一环,尤其是在操作完成后及时关炉是保障设备长期稳定运行的关键。正确关闭后炉不仅能够有效延长设备使用寿命,还能保证下次使用时设备状态的良好性。本文将详细探讨如何在完成胶质层测定工作后,正确地关掉后炉,并介绍一些常见的操作技巧和注意事项。 在胶质层测定仪的使用过程中,后炉作为核心部件之一,承担着样品加热和保温的任务,因此操作人员需要严格按照步骤关闭。关后炉的正确操作,不仅影响到设备的稳定性,也与测定结果的准确性息息相关。因此,正确操作后炉关闭步骤,不仅是设备维护的一部分,也是确保数据可靠性的重要保障。 一、关闭后炉的基本步骤 停止加热:当实验结束后,应首先通过仪器的控制面板停止加热功能,确保后炉内部温度逐渐降至安全范围。这个步骤是防止过高温度对设备造成损害的步。 断开电源:在温度逐步下降时,应按照设备的操作手册,断开后炉的电源供应。通常,测定仪会有专门的电源开关或断电装置,需要在温度安全后断开电源,避免电力消耗和电路过载。 清理炉内残留物:关闭电源后,应等待设备冷却至适宜温度,再小心地清理炉内残留物。这不仅能防止样品物质在炉内凝固,影响下次测定,还能保持设备内部的清洁,避免污染。 检查设备状态:在清理完毕后,检查后炉的各项参数是否恢复至待机状态,包括炉体的温度、控制面板显示等。确认设备一切状态正常后,可以彻底关闭后炉。 二、常见的误操作与防范 在实际操作中,有时会因操作不当造成后炉关闭时的故障或影响设备使用寿命。以下是几种常见的误操作及如何防范: 忽视温度降温:有些操作人员可能急于关闭后炉电源,但直接断电会导致温度骤降,这对设备内部结构产生不利影响。因此,确保温度先降至安全范围是非常重要的。 过早清理炉内物质:在后炉温度未降至安全值时清理炉内残留物,不仅可能会烫伤操作人员,还会增加炉内的氧化风险,影响下次测定的准确性。 不定期检查设备:有时设备使用后并未进行全面检查,导致后炉内部出现故障,影响下次使用。因此,定期检查后炉的清洁度和温控系统是确保设备长期正常运行的关键。 三、后炉的保养与维护 为了延长胶质层测定仪的使用寿命,定期对后炉进行维护至关重要。操作人员应根据使用频率定期检查后炉的内部结构,如温控系统、加热元件以及电气部分,确保无故障运行。及时更换老化或损坏的部件,能有效避免因设备问题导致的测试误差。 结语 胶质层测定仪后炉的关闭不仅是操作流程中的一个简单步骤,它直接影响到设备的性能和测定结果的准确性。因此,正确的操作方法和定期的设备检查维护,是确保设备长期稳定运行的关键。通过科学合理的操作流程,操作人员能够大化地延长设备寿命,同时保证每次测试的精确与可靠性。
169人看过
真空低温喷雾干燥机
智能干燥箱
小型快速烘干机
氮气循环喷雾干燥机
微波真空烘干机
1.2ML的八联排管
粉状物料干燥机
白炭黑干燥机
抽真空干燥机
蒸发结晶盐
中小型喷雾干燥机
SmartPLS 测量指标示例
气管干燥器
喷雾冷冻干燥设备
工业高温炉
小型高温真空炉
带式干燥设备
吸附干燥器
半导体制冷除湿机
氮气马弗炉
医用喷雾干燥机
土豆渣烘干设备
翻板烘干机
单板干燥设备
实验室气流烘干器
工业热风干燥机
稻谷烘干机设备
单锥螺旋真空干燥机
激光测长仪
双盘红外线烘干器
螺带锥形真空干燥机
粉末干燥设备
长筒烘干机
热循环烘箱
喷涂烘干设备
溶剂干燥装置