2025-01-10 10:50:30双光子成像
双光子成像是一种先进的成像技术,基本原理是利用双光子吸收过程,即同时吸收两个光子使荧光分子激发,实现高分辨率的成像。该技术主要应用于生物医学领域,能够实现对细胞、组织内部结构的深层、高清晰度成像。双光子成像具有非侵入性、高分辨率、低背景噪声等优势,为生命科学研究和临床诊断提供了强有力的工具。

资源:11671个    浏览:10展开

双光子成像相关内容

产品名称

所在地

价格

供应商

咨询

德国布鲁克 多功能双光子成像平台Bruker2pplus
国外 欧洲
面议
布鲁克纳米表面仪器部

售全国

我要询价 联系方式
HRPCS高分辨率光子成像相机
国外 欧洲
面议
北京先锋泰坦科技有限公司

售全国

我要询价 联系方式
FSX双波长飞秒激光器多光子成像1040nm/920nm
国外 欧洲
面议
上海屹持光电技术有限公司

售全国

我要询价 联系方式
双/三光子专用滤光片
国外 美洲
面议
上海昊量光电设备有限公司

售全国

我要询价 联系方式
双光子/三光子荧光显微成像专用液晶空间光调制器
国外 美洲
面议
上海昊量光电设备有限公司

售全国

我要询价 联系方式
2025-02-17 14:30:16核磁共振成像成像特点是什么?
核磁共振成像成像特点 核磁共振成像(MRI)作为一种非侵入性医学成像技术,在现代医学中得到了广泛应用。与传统的X射线和CT扫描不同,核磁共振成像通过利用强磁场和射频脉冲,生成高分辨率的内部图像,能够清晰地呈现身体各个组织和器官的结构。本文将深入探讨核磁共振成像的成像特点,并阐明其在临床应用中的优势。 高分辨率的软组织成像 核磁共振成像显著的特点之一是其在软组织成像方面的优越性。传统的成像技术如X射线或CT扫描主要依赖于硬组织的密度差异,而MRI则能够提供软组织的细节图像。无论是脑组织、肌肉、关节还是器官,核磁共振都能提供清晰的图像,这使得医生在诊断时能够准确识别各种疾病,如脑部肿瘤、脊柱疾病、心血管疾病等。 无辐射危害 与X射线和CT扫描等影像技术不同,核磁共振成像不会使用任何形式的电离辐射,这使得其在许多临床情境下成为一种更加安全的选择。特别是在需要多次检查的情况下(如癌症随访或慢性病监控),MRI因其零辐射特性而具有明显的优势。MRI对孕妇和儿童等敏感人群更为友好,是其在儿科和产科中应用的关键因素之一。 多平面成像能力 核磁共振成像具有独特的多平面成像能力,即能够在不同的平面(如横截面、冠状面、矢状面等)上进行成像。这一特点使得MRI能够从多角度、多方位获取图像,极大提高了疾病诊断的精确度和可靠性。通过多平面重建,医生可以清晰地了解患者病变区域的空间关系,从而进行更有效的诊断和。 组织对比度良好 核磁共振成像提供了较为优异的组织对比度,这使得不同类型的组织在图像中的分辨更加明显。例如,肿瘤和正常组织的对比度非常高,帮助医生识别肿瘤的边界和形态特征。MRI技术还可以通过使用不同的序列(如T1、T2加权成像)来突出显示不同类型的组织结构,这对于临床中的诊断工作至关重要。 动态成像和功能性成像 随着技术的不断发展,MRI不仅能够提供静态的解剖学图像,还能够进行动态成像和功能性成像。例如,通过使用功能性MRI(fMRI)技术,医生可以观察到大脑在执行特定任务时的活动情况,这对于神经科学的研究和疾病的诊断具有重要意义。MRI还可以通过动态对比增强成像(DCE-MRI)评估肿瘤的血流情况,进一步提高肿瘤的评估精度。 总结 核磁共振成像凭借其高分辨率软组织成像、无辐射危害、多平面成像能力、优异的组织对比度以及动态成像和功能性成像等特点,已成为医学影像学领域中不可或缺的重要技术。随着技术的不断进步,MRI将继续在疾病诊断和中发挥着越来越重要的作用,尤其在软组织成像和复杂疾病的早期发现中具有不可替代的优势。 这篇文章结构紧凑,内容详实,使用了相关的SEO关键词,适合于优化网站排名。如果您有任何特定要求或修改意见,可以告诉我,我会根据您的需要进一步调整。
25人看过
2022-09-20 09:16:16光束质量分析仪 - 筱晓光子产品介绍⑦
一、产品介绍BeamOn是光束诊断测量系统,用于实时测量连续或脉冲激光光束,可测量激光光束参数,包括强度分布、光束宽度、形状、位置、功率。软件还具有报告功能,用于光束分析设置和给出结果。系统基于USB2.0接口,软件驱动设备,可以通过高速USB2.0口连接到电脑,在windows 7/8操作系统上运行。CCD轮廓仪超越了相机式光束轮廓仪有限的动态范围,每次测量都是在不同的衰减或电子快门速度下进行的。专利技术使用户能够看到小于激光束最大功率密度1%的特征。二、产品功能特点可测量连续或脉冲光通过USB2.0接口连接到电脑(不需要额外的供电电源)实时显示光斑尺寸和高斯拟合实时2D/3D光斑绘图软件控制电子快门和增益报告功能,光斑分析设置和给出结果技术参数激光类型连续或脉冲光谱响应VIS-NIR 350-1310nm最大帧速25HZ图像分辨率720 x 576快门速度1/50 to 1/100000 sec, 9 steps增益控制6dB to 60dB, 16 steps归零在连续归零模式功能,自动减去背景动态范围使用滤光片最高1x1011,软件控制电子快门和增益灵敏度0.5nW/cm2@633nm (VIS-NIR,UV-NIR)1.5uW/cm2@1310nm (VIS-NIR,UV-NIR)5uW/cm2@1550nm (model IR 1550)传感器有效面积6.47mmX4.83mm饱和1mW/cm2 没有滤光片(VIS-NIR,UV-NIR)5mW/cm2没有滤光片(model IR 1550)脉冲激光器工作可以获取和回放1-100Hz慢脉冲激光,滤除没有激光脉冲帧频,可以显示单发脉冲触发在脉冲模式下,软件上设置滑条阈值,显示有脉冲光的帧显示单脉冲的最大频率10KHz操作温度-10℃-50℃尺寸信息8.6um(H)X8.3um(V)四、实验测试我们用一台850nm DFB 激光光源,功率设置在2mw ,激光器发出的光经过准直器后打到光束质量分析仪,看一下它的光束质量2D图像(3D图像)五、光斑尺寸测试六、产品应用大尺寸激光光斑分析:轮廓、光斑尺寸、位置、功率激光器和IPL质量控制监控多光束之间中心和距离七、产品尺寸
227人看过
2025-02-18 14:30:11细胞成像检测系统如何操作?
细胞成像检测系统:革新生命科学研究的关键工具 细胞成像检测系统是生命科学领域中的一项重要技术,它广泛应用于细胞生物学、医学研究以及药物开发等多个领域。随着技术的不断进步,细胞成像检测系统的功能和精度也在不断提升,使研究人员能够更深入地观察细胞内部的动态变化、结构特征以及各种生物学过程。这些系统不仅帮助科学家更好地理解细胞行为,还为疾病的早期诊断和方案的制定提供了强有力的支持。本文将详细介绍细胞成像检测系统的工作原理、应用领域及其对生命科学研究的重要意义。 细胞成像检测系统的工作原理 细胞成像检测系统通过使用显微技术,结合先进的成像设备,能够捕捉到细胞内部和表面的细节。常见的技术包括荧光显微镜、共聚焦显微镜和电子显微镜等。荧光成像技术利用荧光染料标记细胞中的特定分子或结构,能够清晰地显示细胞的各种动态过程,如蛋白质的表达、细胞的增殖与死亡等。共聚焦显微镜则通过激光扫描技术获得高分辨率的细胞图像,能够在更高的放大倍率下获得更细致的观察结果。 通过这些成像技术,细胞成像检测系统能够实时捕捉细胞在不同生理状态下的变化。比如,研究人员可以通过成像观察癌细胞如何在不同药物作用下发生变化,从而帮助筛选出更具的药物。随着分辨率和成像速度的不断提升,现代细胞成像检测系统能够获得更加精确的细胞图像,甚至可以对活细胞进行长时间的动态监测。 细胞成像检测系统的应用领域 细胞成像检测系统在多个领域得到了广泛应用,特别是在生命科学和医学研究中。它在细胞生物学研究中起着至关重要的作用。通过精确观察细胞内的分子活动,研究人员能够揭示许多细胞内在的生物学过程,包括蛋白质的定位、细胞周期的调控以及细胞信号传导等。通过这些研究,科学家能够深入了解细胞的基本功能和机制。 细胞成像检测系统在癌症研究中的应用也尤为突出。通过实时观察肿瘤细胞的生长和扩散过程,科学家能够分析肿瘤细胞与正常细胞的差异,进而寻找新的靶点进行。细胞成像技术还在药物筛选中得到了重要应用,通过成像系统观察药物对细胞的影响,帮助筛选出更具和更安全的药物。 细胞成像检测系统的未来发展 随着技术的不断创新,细胞成像检测系统在未来将更加、高效。例如,随着超分辨率成像技术的发展,研究人员将能够观察到比以往更细微的细胞结构,甚至可能突破传统显微技术的分辨率极限。自动化和人工智能技术的结合也将进一步提高成像效率和分析准确性,减少人工干预,使细胞成像检测更加便捷。 在疾病诊断方面,细胞成像检测系统的未来也充满了无限潜力。通过结合生物标志物和成像技术,研究人员可以实现更早期的疾病诊断,特别是癌症、神经退行性疾病等疾病的早期筛查,从而提高的成功率。 结论 细胞成像检测系统作为生命科学研究中不可或缺的工具,其在细胞生物学、医学研究及药物开发等领域的应用具有重要意义。随着技术的不断进步,细胞成像系统的功能和应用场景也将不断扩展,推动着生命科学的发展。对于未来的医学和生物学研究,细胞成像检测系统必将继续发挥着关键作用,成为揭示生命奥秘的重要手段。
22人看过
2024-12-30 13:30:12双聚焦磁质谱仪图片
双聚焦磁质谱仪图片:技术原理与应用 双聚焦磁质谱仪(Dual-Focusing Mass Spectrometer)是一种高精度、高分辨率的仪器,广泛应用于化学分析、环境监测、药物研究等多个领域。本文将详细介绍双聚焦磁质谱仪的工作原理、技术优势以及其在科学研究中的重要应用,同时提供相关的仪器图片,帮助读者更好地理解这一先进设备的构造和功能。 双聚焦磁质谱仪的工作原理 双聚焦磁质谱仪通过对离子的质量-电荷比(m/z)进行高精度测量,实现对复杂样本中微量物质的定性和定量分析。其核心原理是利用两个磁场对离子进行聚焦,从而提高分析的分辨率和准确性。 在典型的质谱分析中,离子源首先将样品转化为带电粒子,经过加速后,这些带电离子进入一个磁场。在个聚焦阶段,磁场会对离子按质量进行偏转,不同质量的离子会偏离不同的轨迹。然后,这些离子进入第二个聚焦系统,通过进一步的聚焦和分析,实现对离子群体的高效分离和检测。,质谱仪通过检测器记录离子的信号强度,从而获得质谱图。 双聚焦磁质谱仪通过优化两个磁场的设计,不仅提高了分辨率,还降低了离子信号的背景噪声,使得对复杂样本的分析更加。 双聚焦磁质谱仪的技术优势 高分辨率 双聚焦磁质谱仪的大优势之一就是其的分辨率。相比传统的单聚焦磁质谱仪,双聚焦技术能够更好地分离质量相近的离子,使得分析结果更加精确。这对于复杂的化学混合物或低浓度样品的分析尤为重要。 更强的灵敏度 双聚焦磁质谱仪具有较低的背景噪声,可以在更低的信号强度下进行精确检测。这使得它在微量成分分析、环境监测及药物检测中具有无可比拟的优势。 广泛的应用范围 由于其优异的性能,双聚焦磁质谱仪在生命科学、药物分析、食品安全、环境监测等领域都有着广泛的应用。例如,在临床诊断中,它可以用来检测血液样本中的微量毒素或药物成分;在环境科学中,它可以帮助科学家监测水质、空气质量中的有害物质。 双聚焦磁质谱仪的典型应用 生物医学研究 在生物医学研究中,双聚焦磁质谱仪用于蛋白质组学、代谢组学以及药物代谢的研究。通过高精度测量生物大分子和小分子药物的质量信息,研究人员可以了解药物在体内的代谢过程,进而改进药物的治果和安全性。 食品安全检测 双聚焦磁质谱仪在食品安全检测中发挥着重要作用。它能够有效检测食品中的添加剂、污染物以及微量的有害物质,从而确保食品的质量和安全。 环境污染监测 双聚焦磁质谱仪可用于检测空气、水体和土壤中的污染物,尤其是微量重金属和有机污染物的分析。这为环境保护提供了有力的技术支持,能够帮助相关部门监测和治理环境污染。 结语 双聚焦磁质谱仪凭借其的技术性能,已经成为现代科学研究中不可或缺的分析工具。其高分辨率和高灵敏度使其在多个领域中发挥着重要作用,无论是在基础科研,还是在工业应用中,都展现出了极大的价值。随着技术的不断发展,未来双聚焦磁质谱仪将在更广泛的应用领域中发挥更大作用,为科学技术的进步提供强有力的支持。
37人看过
2022-12-19 13:16:14生物显微镜应用于病理切片成像
生物显微镜应用于病理切片成像现代医学诊断方式非常多样化,但确诊性判断往往需要病理科通过病理成像确认,一份客观准确的病理诊断不仅需要医生专业的判断,还需要通过专业的生物显微镜来获取准确清晰的病理成像。 针对病理切片观察,明美工程师推荐生物显微镜ML51-N.ML51-N是一款高级临床级显微镜,10X目镜视野数达到25mm,镜下像场宽大而平坦,提升工作效率;拥有完善的人体工学设计,长期使用不疲劳:接近自然光的暖白光LED或白光LED,接近自然光的色温,减少长时间观测带来的疲劳。 生物显微镜ML51-N采用便捷的光强管理器:不同物镜切换时光强自动调整为预设的适宜亮度,减少重复亮度调节,可提高工作效率并保证分析条件一致性。ML51-N可后期升级暗场、相衬、荧光和DIC观察,扩展能力非常强大。您若对生物显微镜ML51-N感兴趣或存在疑问,欢迎与我们联系,我们将竭诚为您服务!免责声明本站无法鉴别所上传图片、字体或文字内容的版权,如无意中侵犯了哪个权利人的知识产权,请来信或来电告之,本站将立即予以删除,谢谢。 来源:https://www.mshot.com/article/1625.html
169人看过
ma-N 402
转矩流变仪
希玛ar872s 使用说明
Zahner
土壤电阻率测试仪
LM2596S 技术参数
eDNA Later
二手库伦测厚仪
电动钢筋标距仪
ET-1密封胶
Martin径
近场光谱及成像系统
Mix 5600
赫斯曼接头
全自动固液一体吹扫捕集仪
竹荪菌烘干机
智能流式细胞仪
沥青标准粘度稳定性
赫斯曼接头43650
美国2B Model 106M
大米流量计
链霉亲和素
真空泵类型
亚硝酸钠标准
CR-10色差仪
干湿两用激光粒度分析仪
串联谐振装置
二甲基亚砜
亚硝酸盐标准溶液
硅悬臂探针
空气质量监测仪
DO传感器
数显锚杆拉拔仪
镭神C16
耐摩擦色牢度试验机
青岛聚创H-S102