- 2025-01-10 17:03:03光致发光领域
- 光致发光是指物质在光的照射下,吸收光能后跃迁到激发态,再返回到基态的过程中,以光的形式放出能量的现象。该领域涉及物理学、化学、材料科学等多个学科,广泛应用于照明、显示、检测、生物标记等领域。通过研究光致发光材料的发光原理、性能调控及应用技术,可以推动新型光源、光电探测器等器件的发展,为科技进步和产业升级提供支撑。
资源:613个 浏览:77次展开
光致发光领域相关内容
光致发光领域资讯
-
- 光伏、电池、生物治 疗、生物成像、光致发光领域相关文献推荐【学术简讯22年20期】
- 学术简讯22年20期
-
- 光致发光、发光材料、上转换材料领域相关文献推荐【学术简讯22年24期】
- 本周我们推荐5篇前沿学术成果,针对光致发光、发光材料、上转换材料领域,涉及荧光光谱技术。
光致发光领域产品
产品名称
所在地
价格
供应商
咨询

- 显微光致发光光谱仪
- 国内 北京
- ¥600000
-
北京卓立汉光仪器有限公司
售全国
- 我要询价 联系方式

- PL光致发光光谱仪
- 国内 北京
- 面议
-
北京卓立汉光仪器有限公司
售全国
- 我要询价 联系方式

- 光致发光测试系统
- 国内 上海
- 面议
-
筱晓(上海)光子技术有限公司
售全国
- 我要询价 联系方式

- 光致发光光谱成像测量系统
- 国内 北京
- 面议
-
北京卓立汉光仪器有限公司
售全国
- 我要询价 联系方式

- 光致发光检测设备
- 国内 上海
- 面议
-
上海波铭科学仪器有限公司
售全国
- 我要询价 联系方式
光致发光领域问答
- 2025-03-27 14:30:13数显控制仪应用于哪些领域?
- 数显控制仪应用 数显控制仪作为现代自动化控制系统中的关键设备之一,广泛应用于各种工业生产过程中。它通过数字化方式对温度、压力、流量、液位等物理量进行精确测量和控制,从而实现对生产过程的精细化管理。随着科技的不断进步,数显控制仪在提升生产效率、优化工艺流程、保证产品质量等方面发挥着至关重要的作用。本文将深入探讨数显控制仪的应用领域、工作原理以及在实际生产中的优势。 数显控制仪的工作原理 数显控制仪的核心功能是将传统的模拟信号转换为数字信号,进而对系统进行控制。它通常由传感器、控制器、显示模块等组成,通过传感器实时采集测量值,并将数据传输给控制器,控制器根据预设的参数和算法,做出相应的调整,将控制结果通过显示模块呈现给操作人员。这一过程的高效性和精确度,使得数显控制仪在多个行业中成为不可或缺的设备。 数显控制仪的主要应用领域 工业生产中的温度控制 温度是许多生产过程中的重要控制参数,如在塑料、化学、食品加工等行业中,温度的精确控制直接影响到产品的质量。数显控制仪能够实时监测温度变化,并根据设定值自动调整加热或冷却设备的运行状态,保证产品始终处于理想的生产温度范围内。 压力控制系统 在石油、天然气、化工等行业,压力控制是保证系统安全稳定运行的重要环节。数显控制仪可以实时监测压力变化,当系统出现异常时,及时采取措施,防止因压力失控导致设备损坏或安全事故发生。其高效的实时监控和自动调节功能,使其成为压力控制系统中重要的保障工具。 液位控制 液位测量与控制是化工、制药、食品等行业中常见的应用场景。通过数显控制仪,液位传感器可以精确测量液体的高度,并将数据反馈至控制系统,避免因液位过高或过低导致的系统故障或生产中断。数显控制仪能够提供实时液位数据,确保生产流程的顺畅。 流量控制 在水处理、能源供给及化学反应过程等领域,流量的精确控制至关重要。数显控制仪能够准确监测流量的变化,并根据需求调节阀门的开启度,保证流体在设定范围内稳定流动,从而保障生产过程的高效运行。 数显控制仪的优势 数显控制仪的优势主要体现在以下几个方面: 高精度:通过数字化测量和控制,数显控制仪能够提供高精度的检测和调节功能,确保生产过程中的每个环节都能达到精确控制的要求。 自动化控制:数显控制仪能够根据设定的参数自动调整设备运行状态,极大减少了人工干预,提高了生产效率。 易于操作:现代数显控制仪通常配备友好的操作界面和显示屏,操作人员能够方便地查看实时数据并进行调整,提升了操作的便捷性。 多功能集成:数显控制仪不仅能够实现基本的测量和控制功能,还可以与其他设备联动,提供更多高级功能,如远程监控、报警提示等。 总结 数显控制仪作为现代化自动化控制系统的重要组成部分,凭借其高精度、高可靠性和广泛的应用领域,在各行各业中发挥着重要作用。无论是在温度、压力、流量还是液位控制等方面,数显控制仪都能够提供的数据支持和自动化调节功能,帮助企业实现更高效、更安全的生产流程。随着科技的不断发展,数显控制仪将在更多领域中得到更广泛的应用,成为智能制造不可或缺的核心设备之一。
143人看过
- 2023-08-21 11:41:24热点应用丨OLED的光致发光和电致发光共聚焦成像
- 要点光致发光和电致发光是有机发光二极管(OLED)视觉显示发展的重要技术。与共聚焦显微镜相结合,使用RMS1000共聚焦显微拉曼光谱仪对OLED器件的光电特性进行成像研究。光谱和时间分辨成像获得了比宏观测试更详细的器件组成和质量信息。介绍近年来,有机发光二极管(OLED)已成为高端智能手机和电视全彩显示面板的领先技术之一1。使用量的快速增长是因为OLED提供了比液晶显示器(LCD)更卓 越的性能。例如,它们更薄、更轻、更灵活、功耗更低、更明亮2。在典型的OLED器件中,电子和空穴被注入到传输层中,然后在中心掺杂发光层中复合。这种复合产生的能量通过共振转移到掺杂分子中,从而使其发光。OLED发光的颜色取决于发光层中所掺杂分子的化学结构。当新的有机电致发光器件开发出来时,可以利用光致发光(PL)和电致发光(EL)光谱来表征单个元件和整个器件的光电特性。在本文中,RMS1000共聚焦显微拉曼光谱仪用于表征四种成像模式下OLED器件的光电特性:PL、EL、时间分辨PL(TRPL)和时间分辨EL(TREL)。使用共聚焦显微拉曼光谱仪来表征OLED的光谱和时间分辨特性获得了比宏观测试更详细的信息。材料和方法测试样品为磷光OLED器件,由圣安德鲁斯大学有机半导体光电研究组提供。将样品放置在冷热台(LINKAM)上,通过两个钨探针连接到器件电极上实现成像。使用RMS1000共聚焦显微拉曼光谱仪进行PL、EL、时间分辨PL(TRPL)和时间分辨EL(TREL)成像,如图1。图1 PL、TRPL、EL和TREL成像的实验装置。将装载样品的冷热台放置在显微镜样品台上,如图2所示。对于PL测试,使用532 nm CW激光器和背照式CCD探测器;对于TRPL测试,使用外部耦合的EPL-405皮秒脉冲激光器、MCS模式和快速响应的PMT。对于EL测试,使用Keithley 2450 SMU向OLED器件加电压,并用CCD探测器检测;对于TREL测试,使用Tektronix 31102 AFG向OLED加一系列短脉冲电压,使用MCS模式测试每个脉冲下的衰减。图2 (a)安装在RMS1000上的冷热台;(b) OLED器件电致发光宽场成像。测试结果与讨论大面积光致发光和电致发光光谱成像OLED首次采用PL和EL光谱相结合的方法进行研究。当使用共聚焦显微拉曼光谱仪成像时,可以表征材料在整个器件中的分布以及在发光强度和颜色均匀性方面的整体质量。图3中的PL成像和相应的光谱提供了器件上4个区域发光层分布的信息,还显示了电极的位置。图3 (a)OLED器件的PL光谱强度成像;(b)a中标记的点1和点2的PL光谱。白色和灰色代表PL强度,显示了有机发光层的位置。灰色区域为发光层被顶部电极覆盖的位置。在顶部电极穿过发光层的地方,PL强度降低为未覆盖区域强度的一半以下。这是由于顶部电极材料削弱了激光强度和光致发光强度。对于EL成像,钨探针连接到与区域2相交的电极上。图4中得到的EL图像和相应的光谱表明了EL发光仅发生在区域2中的发光层与电极重叠的区域。在PL成像中,空间分辨率主要取决于样品上激光光斑的大小。而在EL成像中,由于没有激光,因此是通过改变共焦针孔直径来改变空间分辨率(将针孔直径减小到25 μm)。图4 (a)OLED器件的EL光谱强度成像;(b)a中标记的点1和点2的EL光谱。EL强度在整个有源像素上不均匀,这对器件的质量有影响。在区域外边缘有两个(白色)垂直条带,强度比其余部分强。此外,存在许多EL强度降低的非发光区域。这表明器件有缺陷,理想情况下,OLED将在每个像素上呈现出密集和均匀的发光。高分辨率光致发光和电致发光光谱成像为了进一步研究,使用PL和EL对EL有源像素上的较小区域(图5a和图5b)进行高分辨成像。图5b网格内的上部区域是发光层与电极重叠的地方,下部区域是单独的发光层。图5c为 PL强度成像,再次表明被电极覆盖的发光层PL强度小于未覆盖的发光层。PL峰值波长图像(图5d)表明,有电极覆盖的发光层与未覆盖的发光层(611 nm)相比,PL发射峰发生红移(620 nm)。峰值波长的变化表明在不同的区域中能级不同。图5 (a) OLED器件电致发光宽场成像;(b)a网格内的高分辨率宽场成像;(c)PL强度成像;(d)相同区域的PL峰值波长成像;(e)EL强度成像;(f)相同区域的EL峰值波长成像。EL成像显示,与其余部分相比发射强度较弱的缺陷(图5e)波长发生明显红移(图5f)。这是由于缺陷处的EL能带的信号强度降低以及在662 nm处EL能带信号强度同时增加引起的。另外,在EL有源区域的最 底部的区域中,发生蓝移,这与在PL图像上看到的波长变化一致。高分辨率时间分辨光致发光和电致发光成像为获得额外信息,在同一区域进行TRPL和TREL成像,如图6所示。分别用激光脉冲和电脉冲,在MCS模式下测试614 nm处OLED的PL和EL衰减。利用单指数模型拟合衰减曲线。在图6a的TRPL成像中,EL活性区域(上部区域)中的PL寿命比EL非活性区域(下部区域)中的PL寿命短大约200 ns。如图6c所示,分别为800 ns和600 ns。这里观察到与图4中PL强度和波长图像的类似梯度,沿图向下方向的发射强度增强,并且发生了蓝移。因此,根据TRPL数据可得:当光激发时,通过掺杂带可获得不同的能级。在图6b中的TREL成像中,整个区域的寿命相似,大约为470 ns。发现EL寿命显著短于相同区域的PL寿命。图6 (a)OLED的时间分辨PL成像;(b)OLED的时间分辨EL成像;(c)a中选定区域的PL衰减曲线;(d)b中图像的EL衰减曲线。结论RMS1000共聚焦显微拉曼光谱仪用于测试OLED器件的PL、EL、TRPL和TREL成像。这些不同的成像模式提供了关于发光层和电极在整个器件中位置的详细信息,在工作条件下器件的发光强度和颜色均匀性,以及关于PL和EL过程中带隙能量的相对信息。参考文献1. A. Salehi et al., Recent Advances in OLED Optical Design, Adv. Funct. Mater., 2019, 29, 1808803, DOI: 10.1002/adfm.201808803.2. J. M. Ha et al., Recent Advances in Organic Luminescent Materials with Narrowband Emission, NPG Asia Mater., 2021, 13, 1–36, DOI: 10.1038/s41427-021-00318-8.天美分析更多资讯
956人看过
- 2024-11-05 16:13:33热裂解仪是什么?应用在哪些领域?
- 热裂解仪是一种广泛应用于化学研究和工业生产中的高端仪器,主要用于分析有机材料在高温下的热解过程。它通过加热样品,使其分解为小分子化合物,进而对生成的产物进行定性和定量分析。这种设备在环境监测、材料科学、能源开发等多个领域具有重要的应用价值。本文将深入探讨热裂解仪在不同领域中的应用,阐明其对科研和工业生产的重要意义。在环境监测方面,热裂解仪主要用于分析土壤、污水和空气中有机污染物的种类及浓度。在进行环境污染物检测时,热裂解仪能够精确分解样品,释放出有机物质的挥发性成分,为后续的气相色谱或质谱分析提供可靠的数据支持。通过这种分析方法,科学家可以更好地了解环境中有害物质的分布及其变化趋势,为污染治理提供理论依据。热裂解仪在材料科学中的应用也日益重要。研究人员使用热裂解仪对高分子材料、塑料及复合材料的热稳定性进行评估。通过热裂解分析,可以得到材料在不同温度下的热解行为,从而了解其耐热性、分解温度和热解产物。这些数据对新材料的研发和优化至关重要,尤其是在航空航天、汽车工业等领域,耐高温材料的需求不断增加。在能源领域,热裂解仪的应用同样不可或缺。通过分析石油、煤炭和生物质等原料的热裂解产物,研究人员能够了解这些能源在热解过程中的转化效率及产物分布。这对于提高能源的利用率、开发新型燃料以及探索可再生能源具有重要意义。例如,生物质的热裂解技术正在被用作替代传统能源的一个可行方案,它不仅能够减少对化石燃料的依赖,还能有效减少二氧化碳排放,推动绿色能源的发展。热裂解仪在化学工程中的应用也不容忽视。在化学反应过程中,研究人员往往需要通过热裂解分析来监控反应的进程及产物的生成。通过精确控制加热温度和时间,热裂解仪能够模拟反应过程中的热解步骤,为化学反应的优化提供重要数据。这种分析方法对于提高生产效率、降低能耗以及优化产品质量有着极大的帮助。热裂解仪的应用不仅涵盖了多个科学领域,还对现代工业的生产效率和产品质量提升起到了重要推动作用。无论是在环境保护、材料研发、能源利用还是化学工程中,热裂解仪都展现了其不可替代的价值。随着技术的不断进步,热裂解仪在未来将更加和高效,推动各行业向更加智能化、绿色化的方向发展。
125人看过
- 2025-01-15 12:15:13多功能多肽合成仪应用于哪些领域?
- 多功能多肽合成仪:高效提升实验室科研水平的利器 在现代生命科学研究中,多肽合成技术广泛应用于药物研发、疫苗开发以及疾病诊断等领域。随着技术的不断进步,多功能多肽合成仪逐渐成为实验室中的重要设备。本文将探讨多功能多肽合成仪的特点、应用领域及其如何提高实验效率,并讨论其在未来科研工作中的发展前景。 多功能多肽合成仪的技术优势 多肽合成仪是一种用于合成多肽链的自动化设备,通过精确控制化学反应步骤,实现对多肽的高效合成。传统的手动合成方法耗时长、操作复杂,且容易出现误差。而多功能多肽合成仪则通过自动化程序,简化了合成过程,提高了合成效率和精度,极大地减少了人为因素的干扰。 这类仪器通常具备多个功能模块,包括氨基酸添加、去保护、催化反应、洗涤、干燥等多项操作。一些先进的多肽合成仪还具有高度集成的功能,如实时监测合成过程、自动清洗系统、以及灵活的用户接口设置。多功能的设计使其在科研实验中具有极大的灵活性,能够满足不同实验需求。 多功能多肽合成仪的应用领域 药物研发与生物制药 在药物研发领域,多肽合成仪被广泛用于合成生物活性多肽,作为潜在的性药物。随着生物医药技术的进步,合成多肽已成为癌症、糖尿病、心血管疾病等疾病的有效手段。通过使用多功能多肽合成仪,科研人员能够更高效地合成具有生物活性的多肽,从而加速药物的研发进程。 疫苗开发 多肽合成在疫苗研发中扮演着重要角色。尤其在蛋白质疫苗和合成疫苗的研究中,多肽合成仪能够帮助科研人员合成特定的抗原肽,从而提升疫苗的免疫原性。多功能仪器的高效性,使得疫苗研发周期大大缩短,促进了公共卫生防疫体系的建设。 蛋白质组学与生物标志物研究 多功能多肽合成仪还广泛应用于蛋白质组学的研究中,通过合成不同的多肽分子,研究人员可以鉴定生物标志物,帮助早期诊断疾病。随着医学的发展,化的多肽合成技术对生物标志物的发现与应用具有不可替代的重要性。 基础科研与教育培训 在基础科研和教育培训中,多功能多肽合成仪为实验教学提供了便利。科研人员可以利用这些仪器进行合成多肽的实验操作,从而培养出更多具有实践经验的科研人才。与此学生和研究者可以通过这些先进仪器,更加深入理解多肽合成过程及其在生物学中的作用。 未来发展趋势 随着科技不断进步,多功能多肽合成仪的智能化和高通量合成功能日益增强。未来的合成仪不仅会更加和高效,可能还会具备更加灵活的定制化功能。智能化的多肽合成仪将能够根据实验条件的变化,自动优化合成参数,从而进一步提高实验的成功率。合成仪的集成度也会逐步提升,未来有可能发展成集成多项实验操作的全自动化系统,进一步提升实验效率和降低成本。 结语 多功能多肽合成仪通过自动化、精确化的合成过程,大大提升了科研工作的效率和精度。它在药物研发、疫苗开发、蛋白质组学以及教育培训等领域的广泛应用,推动了生命科学研究的飞速发展。未来,随着技术的进一步创新,多功能多肽合成仪将在更多科研领域发挥更大作用,成为实验室科研工作的得力助手。
180人看过
- 2025-04-29 14:45:19洛氏硬度计应用在哪个领域
- 洛氏硬度计应用在哪个领域 洛氏硬度计作为一种广泛应用于材料测试的仪器,凭借其高效、精确的测量特性,已成为许多工业和科研领域中的重要工具。其主要作用是通过测量材料表面硬度,帮助工程师与科研人员评估和比较材料的性能。这篇文章将详细介绍洛氏硬度计在不同领域的应用,分析其在金属加工、质量控制、研发测试等多个行业中的重要性与实际作用。 洛氏硬度计主要应用于金属加工、机械制造、汽车工业、航空航天以及材料科学等领域。在金属加工行业中,它用于快速评估金属材料的硬度,进而判断其适合的加工方法和工艺要求。通过洛氏硬度计的测试,工厂能够及时发现生产过程中可能出现的质量问题,确保成品的可靠性与一致性。 在机械制造和汽车工业领域,洛氏硬度计也是质量控制的关键工具。通过对零部件的硬度检测,能够确保其符合设计标准,从而延长设备的使用寿命,提升产品的性能。例如,发动机零件、齿轮、轴承等的硬度检测,能够有效避免因硬度不足导致的磨损过快和故障发生。航空航天领域也离不开洛氏硬度计,它在高强度合金材料的研发中,起着评估材料耐磨性、抗压性的核心作用。 在材料科学的研究和开发过程中,洛氏硬度计为科研人员提供了精确的数据支持。无论是新材料的研发,还是现有材料性能的优化,硬度测试都是重要的一环。特别是在高新技术行业中,洛氏硬度计的应用帮助研究人员掌握材料的关键性能指标,推动了新型合金和复合材料的应用发展。 洛氏硬度计作为一种重要的测试工具,广泛应用于多个行业,成为提升生产效率、确保质量控制以及推动技术创新的重要利器。无论是在大规模生产环境中,还是在精密研发过程中,洛氏硬度计都发挥着不可或缺的作用,是现代工业和科研不可或缺的设备之一。
106人看过
- 公司新闻
- SPEC 2022线上论坛
- 氢能源解决方案
- 实验室溶液标签
- 示扫描量热仪(DSC)
- 重组DNA技术
- 傅里叶变换红外
- 高内涵成像技术应
- 精密制造业技术
- 增材制造技术
- 生物制药研究
- 色谱分离解决方案
- 塑料血袋抗泄漏测试仪
- 实验室分析
- LS-609湿法激光粒度分析仪
- 亚微米空间分辨O-PTIR技术
- 步入式恒温恒湿房系列
- 变量因素探究聚合物微针微结构
- 全自动颗粒图像分析仪
- 粒径测定技术
- 扫描电镜联用
- X射线光电子能谱 (XPS)
- 核酸制药行业
- 痕量元素分析
- 实验室搬迁服务
- 水产品药残检测能力
- 赛默飞XRD
- 仪器维护和保养
- 外泌体超速离心制备
- 全新数据非依赖性采集技术
- 日实验室安全管理培训班
- 生命科学领域应用
- DCR测量
- 智能油岩矿物分析平台
- 随钻核磁测井仪
- DSC7020差示扫描量热仪
- 复合型人才


