- 2025-01-21 09:31:20流式颗粒成像分析技术
- 流式颗粒成像分析技术是一种先进的颗粒分析技术,它结合了流式细胞术的高通量特性与成像技术的直观性。该技术通过高速流动的液体将颗粒带入检测区域,利用高分辨率相机对颗粒进行实时成像,并获取其形态、大小、荧光强度等多元信息。该技术具有分析速度快、准确度高、样品消耗少等优点,广泛应用于生物医学、材料科学、环境监测等领域,为颗粒的定性与定量分析提供了强有力的工具。
资源:18905个 浏览:71次展开
流式颗粒成像分析技术相关内容
流式颗粒成像分析技术文章
流式颗粒成像分析技术产品
产品名称
所在地
价格
供应商
咨询

- 纳米流式颗粒成像分析系统 横河电机 FlowCam® Nano 纳米流式颗粒成像分析系统
- 国外 亚洲
- 面议
-
横河电机(中国)有限公司
售全国
- 我要询价 联系方式

- 流式颗粒成像分析系统FlowCam®Macro
- 国外 美洲
- 面议
-
横河电机(中国)有限公司
售全国
- 我要询价 联系方式

- FlowCam Macro 流式颗粒成像分析系统
- 国外 亚洲
- 面议
-
横河电机(中国)有限公司
售全国
- 我要询价 联系方式

- 流式颗粒成像分析系统 FlowCam® 8400
- 国外 亚洲
- 面议
-
横河电机(中国)有限公司
售全国
- 我要询价 联系方式

- 流式颗粒成像分析系统FlowCam®8100
- 国外 美洲
- 面议
-
横河电机(中国)有限公司
售全国
- 我要询价 联系方式
流式颗粒成像分析技术问答
- 2023-07-03 13:11:02干混悬颗粒味觉指标分析
- 检测仪器:日本INSENT公司的味觉分析系统 型号:TS-5000Z实验结果:1、干混悬颗粒的AN0碱性苦味和BT0盐酸盐类苦味干混悬颗粒溶解后具有较大的粘性,三个干混悬颗粒AN0传感器测试结果反映三者具有很大的差异,其中C碱性苦味为负数,可认为其没有碱性苦味,B碱性苦味值较大,A样品的碱性也有一定的碱性苦味,但与B相比苦味很小。盐酸盐类苦味(如盐酸小檗碱),从数据上看,B样品不仅有碱性苦味还有很强的盐酸盐类苦味。A样品盐酸盐苦味也很小。C样品没有碱性苦味,盐酸盐类苦味传感器响应明显。2、干混悬颗粒酸性苦味测试酸性苦味传感器是一个广谱型传感器,可以测试食品中、植物性中药中的几乎所有苦味成分。对比苦味先期味道和回味可见,吞咽后口腔中残留的苦味要远小于药品本身的苦味,从图3中可见,酸性苦味先期C>B>A,吞咽后口腔中残留则是A>B>C(详见图4),可见C样品的苦味残留很少,A和B酸性苦味回味接近。
174人看过
- 2023-05-26 10:03:56PhenoTron®-XYZ植物表型成像分析系统
- PhenoTron®-XYZ植物表型成像分析系统,是易科泰生态技术公司基于国际先进光谱成像传感器技术和自主研发的XYZ植物表型自动扫描平台,设计生产的一款适用于实验室或温室高通量植物表型分析系统:国际知名高光谱成像技术公司Specim(芬兰)高光谱成像传感器Thermo-RGB©红外热成像与可见光成像融合分析技术,可实现遥控和在线图传FluorCam叶绿素荧光成像技术平台采用STP(Sensor-To-Plant)技术和在线视觉监控可选配基于蒸渗仪技术的iPOT数字化培养盆,全面监测重量变化、土壤水分与温度,及叶片温度、叶绿素荧光、茎流、光合作用等生理生态参数可选配台面式表型分析平台,XYZ安装在样品平台上,特别适合实验室组培苗和种苗表型分析、种质资源检测等应用于种苗与组培苗表型检测、作物表型研究分析、植物生理生态研究、光合生理研究、种质资源检测、胁迫与抗性评估与筛选等 自左至右依次为:PhenoTron®-XYZ植物表型成像分析系统(可移动)、台面式PhenoTron®-XYZ植物表型成像分析系统、绿豆种苗高光谱成像分析(PRI)主要技术指标:1)平台采用STP技术,嵌入式主控系统,全中文操作界面,触控屏+PC端GUI软件双重控制,可无线控制2)XYZ三轴全自动运行,精 准定位扫描成像分析,运行精度1mm3)支持组合命令,可自定义Protocols,自动执行XYZ三轴移动、停止、光源开闭、快门触发等4)支持位置记忆,可一键注册、记录、保存、读取XYZ坐标信息,自动移动精 准定位采集Thermo-RGB及FluorCam叶绿素荧光成像数据5)机器视觉监控:监控镜头经过算法校准,在线监视全域植物状态和自动扫描成像,通过注册XYZ自动定位采集RGB、红外热成像、FluorCam叶绿素荧光成像数据,并在线监控全过程6)标配台面式XYZ三轴有效行程:X轴80cm,Y轴有效扫描长度180cm,Z轴可升降范围30cm7)400-1000nm高光谱成像:a)光谱通道448,具备MROI功能,根据需求自由选择感兴趣光谱波段,减少数据冗余b)帧率:330FPS(满帧),适应多种测量场景,尤其对容易摆动的植物,保证最 佳的成像效果c)光谱分辨率 FWHM:5.5nmd)空间分辨率:1024像素e)信噪比400:1f)分析参数:可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、叶绿素荧光指数、健康指数、覆盖度等近百种参数8)900-1700nm高光谱成像:a)光谱通道224,具备MROI功能,根据需求自由选择感兴趣光谱波段,减少数据冗余b)帧率:670FPS(满帧)c)光谱分辨率 FWHM:8nmd)空间分辨率:640像素e)信噪比1000:1f)分析参数:可成像测量分析NDNI归一化N指数、NDWI归一化水指数、MSI水分胁迫指数等9)SpectrAPP®高光谱成像分析软件:a)具备伪彩色/灰度显示、波段融合、ROI选区、光谱指数分析、光谱曲线绘制、光谱特征统计、直方图统计、结果图/表导出等功能b)可分析NDVI、PRI、DCNI、CRI、ARI、PSRI、NPQI、EVI、HI、WBI等数十种光谱指数,可根据需求定制添加光谱指数 左:SpectrAPP®高光谱成像分析,右:绿豆幼苗叶绿素荧光成像分析10)Thermo-RGB成像:a)可见光-红外热成像双镜头主机,出厂黑体多点校准并附校准证书,分辨率640×512像素b)测量温度范围-25℃-150℃,灵敏度0.03℃@30℃,c)红外热成像分析软件具备调色板、差值技术、温度范围设置、等温线模式、选区分析、温度扫描、剖面温度、时间图、3D温度图、在线报告等功能d)Thermo-RGB©成像融合分析:可进行手动/自动ROI分析;光照/背光叶片长度、宽度、周长、凸包面积、圆度等形态分析;最 高、最 低、平均温度、最 大温差、中位数等温度分析;R/G/B、H/S/V、绿视率等颜色分析,具备温度直方图统计、路劲分析、温度转换、图/表导出等功能e) Thermo-RGB遥控并可在线图像无线传输,实时监测RGB及红外热成像画面,测量最 大、最 小、中心点温度信息等11)叶绿素荧光成像:a)专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720×560像素,像素大小8.6×8.3µmb)3色4组LED激发光源:620nm脉冲调制测量光,620nm红色、5700K白色双色光化学光源,735nm远红光用于测量Fo’等c)光化学光最 大1000µmol.m-2. s-1可调,饱和脉冲3900µmol.m-2. s-1d)可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocolse)50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图f) 自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图g) 可通过注册定位自动精 准定位运行叶绿素荧光成像分析,单次成像面积35x46mmh)可对植物叶片、果实等不同组织进行叶绿素荧光成像分析i) 可选配GFP成像j) 配备便携支架和叶夹,方便独立使用
216人看过
- 2025-01-06 18:15:12电涡流式测厚仪怎么校正
- 电涡流式测厚仪怎么校正 电涡流式测厚仪是一种常用的无损检测工具,广泛应用于材料的厚度测量中,尤其是在金属、涂层以及其他非磁性材料的测量中。为了保证测量结果的准确性和可靠性,定期的校正是非常必要的。本文将详细介绍电涡流式测厚仪的校正方法、步骤以及需要注意的关键点,帮助用户正确操作和维护仪器,确保测量精度,减少测量误差。 电涡流式测厚仪的原理 电涡流式测厚仪基于电涡流原理,利用高频电流在导电材料中产生的电涡流效应,通过测量涡流的变化来判断材料的厚度。该方法对待测物体表面无损伤,且对非磁性材料(如铝、铜、塑料涂层等)的测量具有较高的精度。由于电涡流的测量结果受多种因素的影响,如材料表面状况、温度变化等,因此仪器需要定期校正,以保证其准确性。 电涡流式测厚仪校正的必要性 校正是确保测厚仪准确性和可靠性的关键步骤。由于电涡流测量受多种变量影响,如测量环境、材料特性以及探头与被测物表面的接触情况等,若不定期校正,可能会导致读数偏差,从而影响测量结果的可信度。因此,通过标准校正件或校正板来进行校正,是确保仪器准确测量的必要环节。 电涡流式测厚仪的校正方法 选择校正标准件 校正时,首先需要选择与被测材料相同或相似的标准件。校正件的材质、厚度以及表面状态应与实际测量环境相符。一般来说,可以使用已知厚度的金属块、涂层样本或具有已知厚度的标准片。 调整仪器设置 在开始校正前,确保测厚仪的电池电量充足,仪器的设置参数(如频率、测量模式等)应根据校正件的特性进行适当调整。有些测厚仪提供自动校正功能,用户可通过选择合适的预设模式来完成校正。 校正步骤 将标准校正件平稳地放置在仪器的探头下,确保探头与表面接触良好且垂直。按照仪器说明书上的校正流程进行操作。一般来说,测厚仪会要求用户对比标准件的厚度与仪器显示的值,根据显示结果调整仪器的读数,直到读数与标准件的实际厚度一致。 多点校正 为确保高精度测量,建议在多个不同位置进行校正,尤其是当被测物表面存在不规则时,多个测量点能帮助提升校正的准确性。校正时,检查不同位置的读数是否一致,如果发现较大偏差,可能需要检查仪器是否存在故障或探头是否损坏。 记录和验证 完成校正后,建议记录下校正数据,并定期检查仪器的状态。对于重要测量任务,好进行一次验证测量,确保校正结果的有效性。校正后,应进行一段时间的实际测量验证,以保证测厚仪始终保持佳性能。 电涡流式测厚仪校正时的注意事项 环境因素 测量环境的温度、湿度、振动等都会影响校正结果。因此,校正时应尽量在稳定的环境中进行,避免环境波动影响仪器的性能。 标准件的选择 选择标准件时,要确保其厚度精度和表面平整度符合校正要求。任何微小的偏差都会影响到终的校正效果。 仪器维护 定期检查电涡流式测厚仪的探头、显示屏和接口等部件,保持仪器清洁,避免灰尘或腐蚀物影响测量精度。 定期校正 即便测量仪器的误差不明显,定期校正也是确保长期准确性的必要措施。推荐至少每半年进行一次全面的校正,尤其是在频繁使用的情况下。 结论 电涡流式测厚仪的校正不仅是保证其测量精度的关键,也是确保仪器长期稳定运行的基础。通过定期校正、选择合适的校正标准件、调整合适的仪器设置,并关注环境因素的变化,可以大大减少误差,确保测量结果的可靠性。在进行电涡流式测厚仪校正时,务必严格按照标准操作流程进行,保障测量的高效性与准确性。
120人看过
- 2025-02-17 14:30:16核磁共振成像成像特点是什么?
- 核磁共振成像成像特点 核磁共振成像(MRI)作为一种非侵入性医学成像技术,在现代医学中得到了广泛应用。与传统的X射线和CT扫描不同,核磁共振成像通过利用强磁场和射频脉冲,生成高分辨率的内部图像,能够清晰地呈现身体各个组织和器官的结构。本文将深入探讨核磁共振成像的成像特点,并阐明其在临床应用中的优势。 高分辨率的软组织成像 核磁共振成像显著的特点之一是其在软组织成像方面的优越性。传统的成像技术如X射线或CT扫描主要依赖于硬组织的密度差异,而MRI则能够提供软组织的细节图像。无论是脑组织、肌肉、关节还是器官,核磁共振都能提供清晰的图像,这使得医生在诊断时能够准确识别各种疾病,如脑部肿瘤、脊柱疾病、心血管疾病等。 无辐射危害 与X射线和CT扫描等影像技术不同,核磁共振成像不会使用任何形式的电离辐射,这使得其在许多临床情境下成为一种更加安全的选择。特别是在需要多次检查的情况下(如癌症随访或慢性病监控),MRI因其零辐射特性而具有明显的优势。MRI对孕妇和儿童等敏感人群更为友好,是其在儿科和产科中应用的关键因素之一。 多平面成像能力 核磁共振成像具有独特的多平面成像能力,即能够在不同的平面(如横截面、冠状面、矢状面等)上进行成像。这一特点使得MRI能够从多角度、多方位获取图像,极大提高了疾病诊断的精确度和可靠性。通过多平面重建,医生可以清晰地了解患者病变区域的空间关系,从而进行更有效的诊断和。 组织对比度良好 核磁共振成像提供了较为优异的组织对比度,这使得不同类型的组织在图像中的分辨更加明显。例如,肿瘤和正常组织的对比度非常高,帮助医生识别肿瘤的边界和形态特征。MRI技术还可以通过使用不同的序列(如T1、T2加权成像)来突出显示不同类型的组织结构,这对于临床中的诊断工作至关重要。 动态成像和功能性成像 随着技术的不断发展,MRI不仅能够提供静态的解剖学图像,还能够进行动态成像和功能性成像。例如,通过使用功能性MRI(fMRI)技术,医生可以观察到大脑在执行特定任务时的活动情况,这对于神经科学的研究和疾病的诊断具有重要意义。MRI还可以通过动态对比增强成像(DCE-MRI)评估肿瘤的血流情况,进一步提高肿瘤的评估精度。 总结 核磁共振成像凭借其高分辨率软组织成像、无辐射危害、多平面成像能力、优异的组织对比度以及动态成像和功能性成像等特点,已成为医学影像学领域中不可或缺的重要技术。随着技术的不断进步,MRI将继续在疾病诊断和中发挥着越来越重要的作用,尤其在软组织成像和复杂疾病的早期发现中具有不可替代的优势。 这篇文章结构紧凑,内容详实,使用了相关的SEO关键词,适合于优化网站排名。如果您有任何特定要求或修改意见,可以告诉我,我会根据您的需要进一步调整。
140人看过
- 2025-05-19 11:15:18透射电子显微镜怎么成像
- 透射电子显微镜(Transmission Electron Microscope, TEM)作为现代科学研究中的一项重要工具,广泛应用于材料科学、生物学、化学等领域。它的工作原理和成像技术为我们揭示了物质的微观结构,尤其是能够深入到纳米级别,观察细胞内部的精细结构以及各类材料的晶体结构。本文将详细介绍透射电子显微镜如何进行成像,探讨其成像原理、过程及其优势,为理解其在科研中的重要作用提供清晰的视角。 透射电子显微镜的成像原理 透射电子显微镜通过利用电子束与样品的相互作用进行成像。与传统光学显微镜不同,透射电子显微镜使用高能电子束而非光线,因为电子波长远小于可见光,从而能够观察到比光学显微镜更为细微的物质结构。当电子束通过样品时,部分电子被样品中的原子散射或透过,另一部分则未受影响。通过检测这些不同的电子束,电子显微镜能够绘制出样品的详细影像。 成像过程 电子束的生成与聚焦 透射电子显微镜的电子束通常由一个加速器产生并通过电磁透镜聚焦成极细的电子束。加速后的电子束具有极高的能量,可以穿透很薄的样品。 样品的制备 样品必须足够薄,以便电子束能够透过。一般来说,样品的厚度需要控制在100nm以下,这样电子才能顺利通过并获得清晰的成像。 与样品的相互作用 当电子束与样品的原子发生相互作用时,部分电子会被散射,部分则通过样品。这些散射电子和透过电子的不同程度为成像提供了信息。 成像与放大 整个透射过程通过一系列的透镜系统,将透过样品的电子聚焦到荧光屏或相机上,从而形成样品的高分辨率图像。不同的电子透过样品的路径、散射程度以及强度变化构成了图像的细节。 透射电子显微镜的优势 高分辨率 透射电子显微镜的大优势在于其超高的分辨率,能够观察到原子级别的细节。由于电子的波长比可见光波长短,它能揭示光学显微镜无法捕捉到的微观结构。 纳米尺度观察 TEM不仅能够看到纳米尺度的细节,还是观察材料、细胞、病毒等微观结构的首选工具,广泛应用于科学研究及临床诊断中。 多功能性 除了成像,透射电子显微镜还可以进行化学成分分析(如电子能量损失谱、X射线能谱等),进一步提高了其应用的广泛性和准确性。 结语 透射电子显微镜作为现代科研不可或缺的工具,其高分辨率和独特的成像原理使其在微观结构观察中具有无可替代的地位。无论是在材料科学还是生物学领域,TEM为我们提供了观察微观世界的新视角和深度,使我们得以深入探索细胞、材料和纳米结构的复杂性。
158人看过
- 技术文章
- CIC-D150型离子色谱仪
- 在线清洁验证
- 实体显微镜
- 干法激光粒度仪
- 电子负载租赁
- 真空冷冻干燥机故障维修
- 无目镜体视显微镜
- TANK PLUS微波消解仪
- 电磁流量计校验
- 百特激光粒度仪
- 动态接触角
- 电磁流量计计量性能要求
- 柴油十六烷值测定机
- 车辆超重检测
- 诊断用多肽
- 自动闭口闪点仪
- 金刚石量子计
- 赛里安LC6000液相色谱仪
- 导波雷达液位计清洗
- 全自动空气发生器
- 超高通量组织研磨仪
- 超强度激光器
- 定量平行浓缩仪
- 运动粘度仪
- 导波雷达液位计盲区
- PW激光器
- 粘度测定仪
- HAAKE流变仪使用
- 俯视法接触角测量仪
- 非满管污水流量计
- 静态接触角
- 水环境检测
- 常压声悬浮系统
- 粒度测试仪器
- 电磁污水流量计品牌
- 涡旋混合器


