2025-01-21 09:31:43纳米反应器
纳米反应器是一种在纳米尺度上设计的微型反应系统,其尺寸通常在1-100纳米范围内。它们具有极高的比表面积和独特的物理化学性质,能够实现高效的物质传输和反应速率。纳米反应器在催化、药物传递、环境监测等领域展现出巨大潜力,能够精确控制反应过程,提高产物选择性和产率,为科学研究和工业应用提供了全新的平台。

资源:2705个    浏览:14展开

纳米反应器相关内容

产品名称

所在地

价格

供应商

咨询

合成反应器-幂方科技 Auto SR100 自动合成反应器
国内 上海
面议
上海幂方电子科技有限公司

售全国

我要询价 联系方式
Nicomp 380 N3000 纳米激光粒度仪
国外 美洲
¥500000
上海奥法美嘉生物科技有限公司

售全国

我要询价 联系方式
NP-JR04 石墨烯、纳米新材料反应器
国内 广东
¥68000
纳威科技(深圳)有限公司

售全国

我要询价 联系方式
纳米激光粒度仪NKT-N9
国内 山东
面议
山东耐克特分析仪器有限公司

售全国

我要询价 联系方式
Nicomp380Z3000纳米粒径与电位分析仪
国外 美洲
¥500000
上海奥法美嘉生物科技有限公司

售全国

我要询价 联系方式
2025-01-24 11:00:13细胞生物反应器 标准有哪些?
细胞生物反应器标准:提升生物制造的关键 细胞生物反应器(Cell Bioreactor)作为生物制药和生物工程领域中至关重要的设备,已经广泛应用于细胞培养、发酵、蛋白质生产等多个领域。细胞生物反应器不仅是大规模生物产品生产的核心设施,也是实现工业化生物过程的基础。为了保证产品的质量与一致性,细胞生物反应器的标准化设计和操作显得尤为重要。本文将深入探讨细胞生物反应器的标准以及其在生物工程中的重要性。 细胞生物反应器标准的背景 随着生物制药行业的快速发展,细胞生物反应器的需求逐年增加。生物反应器的主要作用是为细胞提供一个控制良好的环境,促进细胞生长、繁殖和代谢活动,以便产出所需的生物产品。为确保生物反应器在不同环境下的可靠性和一致性,业界逐步建立起了一些标准。无论是国际标准还是各国国家标准,细胞生物反应器的设计、性能、操作及维护都有了明确的规范要求。 细胞生物反应器标准的重要性 细胞生物反应器的标准化不仅有助于提升生物反应器的使用效率,还能有效降低生产中的风险。一个标准化的反应器系统能够在不同的应用场景中实现更高的兼容性和灵活性,确保产品质量的一致性。例如,标准化的反应器设计可以保证温度、pH、溶氧等关键参数的控制,进而提高细胞培养的稳定性和生产效率。 细胞生物反应器的关键设计标准 细胞生物反应器的设计标准主要包括以下几个方面: 材料选择与卫生标准:生物反应器的材质必须符合生物医药领域的安全标准,通常选用不锈钢、玻璃、或者具有生物相容性的合成材料,以保证不与培养物发生反应,并避免污染。 培养环境控制系统:温度、pH值、溶氧量和二氧化碳浓度的控制至关重要。标准化的反应器配备了先进的传感器和自动调节系统,可以实时监测并调整这些关键参数,以确保细胞培养环境的佳状态。 搅拌与气体交换系统:为了促进细胞的生长和代谢,反应器内部通常配有搅拌装置和气体交换系统。标准化设计要求搅拌系统能够有效地维持细胞的均匀分布,同时确保充足的氧气供应,以支持细胞的高效生长。 培养液的无菌条件:生物反应器必须保持无菌环境,避免外界微生物的污染。标准中对反应器的无菌操作和灭菌过程有严格要求,确保培养液的纯度和细胞的安全性。 细胞生物反应器的操作与维护标准 除了设计标准外,细胞生物反应器的操作与维护同样需要严格遵循标准化流程。操作人员必须经过专业培训,掌握反应器的操作技能,并能够根据反应器状态做出及时调整。定期的维护与清洁也是确保反应器长期高效运行的必要条件,规范化的维护流程能够延长设备的使用寿命,并减少生产中的故障率。 细胞生物反应器标准的应用 国际上,诸如ISO、FDA等机构都制定了一系列细胞生物反应器相关标准,这些标准的实施推动了生物制药行业的规范化与标准化发展。尤其是在跨国公司和供应链中,标准化设计和操作不仅提升了生产效率,还确保了跨地区合作中的质量一致性。 结语 细胞生物反应器标准在生物制造和制药过程中起着至关重要的作用。它不仅提升了生产过程的稳定性与效率,还确保了产品的质量安全。随着技术的不断进步和行业需求的日益增加,细胞生物反应器的标准化发展将更加完善,推动生物产业迈向更加高效和可持续的未来。在生物制造的复杂环境中,遵循严格的标准化操作,已经成为保证行业竞争力和产品质量的关键因素。
45人看过
2023-08-18 09:25:26微通道反应器技术在氯化反应工艺中的新应用
氯化反应氯化反应是有机合成的重要组成,广泛应用于农用和药 用化学品的研发和生产。由于这类反应的危险系数高,在传统的釜式反应器中更存在产率,环保,质量等问题。微通道反应器具有良好的传质和换热特性,应用于氯化反应对于选择性和收率有很大的提升,有利于绿色工艺的研究。本文摘自贾志远等人于2021年5月发表在《燃料与染色》上的一篇综述文章:微通道技术在氯化反应工艺中的应用。向您介绍连续流技术在氯化反应的特色应用,希望对您有所启发。在微通道反应器中光化学氯化反应研究案例连续流化学反应近两年发展迅速。在微通道反应器中的光化学氯化反应,反应混合物可以受到强烈而均匀的光照,不仅会提高氯气的利用率,而且可以缩短反应时间,提高产率。研究者利用微反应器开展了甲苯-2,4-二异氰酸酯的选择性光化学氯化反应。如图所示,甲苯-2,4-二异氰酸酯的四氯乙烷溶液由液相管路进入微通道反应器中,与当量摩尔比的氯气在微反应器中混合,光照下生成产品1-氯甲基-2,4二异氰基苯,经水解和缩合过程形成副产物甲苯5-氯-2,4-二异氰酸酯。在微通道反应器中氯化慢反应研究案例陈光文等人采用微通道氯化反应装置,设计合成了橡胶防焦剂CTP(N-环己基硫代邻苯二甲酰亚胺)的工艺,来解决反应时间长、釜式反应混合不均匀、收率低等问题。原料和溶剂通过计量泵输送到微混合器中形成浓度12%的二环己基二硫化合物溶液,然后降温到10℃,降温后的原料液和当量比的氯气在微通道反应。反应过程中氯气通入二环己基二硫化物的时间大幅缩短,收率达到93%,高出现有生产技术3~4个百分点。参考文献[1]贾志远,刘嵩,杨林涛,闫士杰,刘东,鄢冬茂.微通道技术在氯化反应工艺中的应用[J].染料与染色,2021,58(02):49-54.编者语在康宁AFR反应器上,也做过很多的氯化反应,绝大部分都得到了比釜式更好的结果。由于康宁反应器是玻璃材质,更加适合光氯化反应。例如:利用康宁反应器在进行某个烷烃的氯化反应时,在光照下,其选择性是釜式的1.5倍,几乎能选择性地进行单氯代。在进行吡啶化合物的氯代时,其选择性高于 釜式约10个百分点。关键是选择性高了之后,可以不进行后处理而直接进入下一步反应,极大降低了损耗。康宁反应器无缝放的技术优势有利于光氯化反应放到到工业化生产。如果想了解康宁AFR?高通量-微通道反应器技术以及康宁反应器在连续化反应生产中的应用实例,请关注康宁反应器公众号或者访问康宁公司反应器技术相关网站电话:400-8121-766邮件:reactor.asia@corning.com
173人看过
2022-04-24 16:42:23纳米多孔氧化铝
本品为化学法合成的白色球形粉末,无重金属、 无放射性元素。物理指标①晶相 γ相②AI2O3含量 ≥99.9③ 介孔 0.38④ 原晶粒度 50-60纳米化学指标①本品用于喷墨打印纸的涂层, 为纸张提高光泽。②増加涂料的耐磨性,具有助流、 提高上粉率、防结块等特点应用范围①导热硅胶②电子灌封胶③粉末涂料公众号搜索粉体圈,联系报价。联系方式:400-869-9320转8990更多信息进入店铺查看:https://www.360powder.com/shop.html?shop_id=1727
141人看过
2023-04-20 09:37:22BeNano 180 Zeta Pro 纳米粒度及 Zeta
BeNano 180 Zeta Pro 纳米粒度及 Zeta 电位分析仪BeNano 180 Zeta Pro 纳米粒度及 Zeta 电位分析仪——背向 + 90°散射粒度 + Zeta 电位三合一型仪 器 简 介BeNano 180 Zeta Pro 纳米粒度及Zeta电位分析仪是BeNano 90+BeNano 180+BeNano Zeta 三合一的顶 级光学检测系统。该系统中集成了背向 +90°动态光散射 DLS、电泳光散射 ELS和静态光散射技术 SLS,可以准确的检测颗粒的粒径及粒径分布,Zeta 电位,高分子和蛋白体系的分子量信息等参数,可广泛的应用于化学、化工、生物、制药、食品、材料等领域的基础研究和质量分析与控制。指标与性能Index&performance粒径测试原理:动态光散射技术粒径范围:0.3 nm – 15 μm样品量:3 μL - 1 mL检测角度:173°+90°+12°分析算法:Cumulants、通用模式、CONTIN、NNLSZeta电位测试原理:相位分析光散射技术检测角度:12°Zeta范围:无实际限制电泳迁移率范围:> ±20 μ.cm/V.s电导率范围:0 - 260 mS/cmZeta测试粒径范围:2 nm – 110 μm分子量测试分子量范围:342 Da – 2 x 107 Da微流变测试频率范围:0.2 – 1.3 x 107 rad/s测试能力:均方位移、复数模量、弹性模量、粘性模量、蠕变柔量粘度和折光率测试粘度范围:0.01 cp – 100 cp折光率范围:1.3-1.6趋势测试模式:时间和温度系统参数温控范围:-15° C - 110° C+/- 0.1°C冷凝控制:干燥空气或者氮气标准激光光源:50 mW 高性能固体激光器, 671 nm相关器:最快25 ns采样,最多 4000 通道,1011 动态线性范围检测器:APD (高性能雪崩光电二极管)光强控制:0.0001% - 100%,手动或自动软件中文和英文符合21CFR Part 11原理图仪器检测检测参数颗粒体系的光强、体积、面积和数量分布颗粒体系的 Zeta 电位及其分布分子量分布系数 PD.I扩散系数 D流体力学直径 D H颗粒间相互作用力因子 k D溶液粘度检测技术动态光散射电泳光散射静态光散射
160人看过
2022-07-14 15:06:51浅谈扫描俄歇纳米探针
简介        扫描俄歇纳米探针,又称俄歇电子能谱(Auger Electron Spectroscopy,简称AES)是一种表面科学和材料科学的分析技术。根据分析俄歇电子的基本特性得到材料表面元素成分(部分化学态)定性或定量信息。可以对纳米级形貌进行观察和成分表征。近年来,随着超高真空和能谱检测技术的发展,扫描俄歇纳米探针作为一种极为有效的表面分析工具,为探索和研究表面现象的理论和工艺问题,做出了巨大贡献,日益受到科研工作者的普遍重视。俄歇电子能谱常常应用在包括半导体芯片成分表征等方向发展历史        近年来,固体表面分析方法获得了迅速的发展,它是目前分析化学领域中最活跃的分支之一。它的发展与催化研究、材料科学和微型电子器件研制等有关领域内迫切需要了解各种固体表面现象密切相关。各种表面分析方法的建立又为这些领域的研究创造了很有利的条件。在表面组分分析方法中,除化学分析用光电子能谱以外,俄歇电子能谱是最重要的一种。目前它已广泛地应用于化学、物理、半导体、电子、冶金等有关研究领域中。        俄歇现象于1925年由P.Auger发现。28 年以后,J.J.Lander从二次电子能量分布曲线中第一次辨认出俄歇电子谱线, 但是由于俄歇电子谱线强度低,它常常被淹没在非弹性散射电子的背景中,所以检测它比较困难。        1968年,L.A.Harris 提出了一种“相敏检测”方法,大大改善了信噪比,使俄歇信号的检测成为可能。以后随着能量分析器的完善,使俄歇谱仪达到了可以实用的阶段。         1969年圆筒形电子能量分析器应用于AES, 进一步提高了分析的速度和灵敏度。        1970年通过扫描细聚焦电子束,实现了表面组分的两维分布的分析(所得图像称俄歇图),出现了扫描俄歇微探针仪器。        1972年,R.W.Palmberg利用离子溅射,将表面逐层剥离,获得了元素的深度分析,实现了三维分析。至此,俄歇谱仪的基本格局已经确定, AES已迅速地发展成为强有力的固体表面化学分析方法,开始被广泛使用。基本原理        俄歇电子是由于原子中的电子被激发而产生的次级电子。当原子内壳层的电子被激发形成一个空穴时,电子从外壳层跃迁到内壳层的空穴并释放出光子能量;这种光子能量被另一个电子吸收,导致其从原子激发出来。这个被激发的电子就是俄歇电子。这个过程被称为俄歇效应。Auger electron emission        入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。        如果电子束将某原子K层电子激发为自由电子,L层电子跃迁到K层,释放的能量又将L层的另一个电子激发为俄歇电子,这个俄歇电子就称为KLL俄歇电子。同样,LMM俄歇电子是L层电子被激发,M层电子填充到L层,释放的能量又使另一个M层电子激发所形成的俄歇电子。        只要测定出俄歇电子的能量,对照现有的俄歇电子能量图表,即可确定样品表面的成份。由于一次电子束能量远高于原子内层轨道的能量,可以激发出多个内层电子,会产生多种俄歇跃迁,因此,在俄歇电子能谱图上会有多组俄歇峰,虽然使定性分析变得复杂,但依靠多个俄歇峰,会使得定性分析准确度很高,可以进行除氢氦之外的多元素一次定性分析。同时,还可以利用俄歇电子的强度和样品中原子浓度的线性关系,进行元素的半定量分析,俄歇电子能谱法是一种灵敏度很高的表面分析方法。其信息深度为5nm以内,检出限可达到0.1%atom。是一种很有用的分析方法。系统组成        AES主要由超高真空系统、肖特基场发射电子枪、CMA同轴式筒镜能量分析器、五轴样品台、离子枪等组成。以ULVAC-PHI的PHI 710举例,其核心分析能力为25 kV肖特基热场发射电子源,与筒镜式电子能量分析器CMA同轴。伴随着这一核心技术是闪烁二次电子探测器、 高性能低电压浮式氩溅射离子枪、高精度自动的五轴样品台和PHI创新的仪器控制和数据处理软件包:SmartSoft AES ™ 和 MultiPak ™。并且,目前ULVAC-PHI的PHI 710可以扩展冷脆断样品台、EDS、EBSD、BSE、FIB等技术,深受广大用户认可。PHI710激发源,分析器和探测器结构示意图:        为满足当今纳米材料的应用需求,PHI 710提供了最高稳定性的 AES 成像平台。隔声罩、 低噪声电子系统、 稳定的样品台和可靠的成像匹配软件可实现 AES对纳米级形貌特征的成像和采谱。        真正的超高真空(UHV)可保证分析过程中样品不受污染,可进行明确、准确的表面表征。测试腔室的真空是由差分离子泵和钛升华泵(TSP)抽气实现的。肖特基场发射源有独立的抽气系统以确保发射源寿命。最新的磁悬浮涡轮分子泵技术用于系统粗抽,样品引入室抽真空,和差分溅射离子枪抽气。为了连接其他分析技术,如EBSD、 FIB、 EDS 和BSE,标配是一个多技术测试腔体。         PHI 710 是由安装在一个带有 Microsoft Windows ® 操作系统的专用 PC 里的PHI SmartSoft-AES 仪器操作软件来控制的。所有PHI电子光谱产品都包括执行行业标准的 PHI MultiPak 数据处理软件用于获取数据的最大信息。710 可应用互联网,使用标准的通信协议进行远程操作。AES的应用        扫描俄歇纳米探针可分析原材料(粉末颗粒,片材等)表面组成,晶粒观察,金相分布,晶间晶界偏析,又可以分析材料表面缺陷如纳米尺度的颗粒物、磨痕、污染、腐蚀、掺杂、吸附等,还具备深度剖析功能表征钝化层,包覆层,掺杂深度,纳米级多层膜层结构等。AES的分析深度4-50 Å,二次电子成像的空间分辨可达 3纳米,成分分布像可达8纳米,分析材料表面元素组成 (Li ~ U),是真正的纳米级表面成分分析设备。可满足合金、催化、半导体、能源电池材料、电子器件等材料和产品的分析需求。AES 应用的几种例子,从左到右为半导体FIB-cut,锂电阴极向陶瓷断面分析小结本文小编粗浅的介绍了俄歇电子能谱AES的一些基础知识,后续我们还会提供更有价值的知识和信息,希望大家持续关注“表面分析家”!
337人看过
低轨大视场极光观测
风云三号气象卫星
信息公开办法
机械行业标准
热延伸试验仪
生态环境监测类
产品研发应急项目
农产品安全
纳米反应器
水平垂直燃烧试验仪
重大研究计划
制药装备行业标准
光电离反射式
国家计量比对项目
水泥细度负压筛析仪
气候预测智能技术
大气NO2
工业和通信业
五年行动计划
发明专利授权
滑雪模拟机
避障控制共性技术
环境监测方法
压力标准器
通用技术条件
计量技术机构
视频研讨会
安全技术监察
CE认证证书
CCD探测器
无线充电芯片
直流断路器
智能感应式
准入信息指南
行人优先控制系统
燃气表检测装置
纳米反应器
水平垂直燃烧试验仪
水泥细度负压筛析仪
CCD探测器
紫外光度计