- 2025-03-28 15:24:11射频等离子手术系统
- 射频等离子手术系统是一种先进的医疗设备,利用低温射频等离子技术切割、消融组织。该系统具有出血少、精度高、恢复快等特点,广泛应用于耳鼻喉科、骨科、神经外科等领域。通过射频能量激发等离子态,使目标组织分解汽化,达到治疗目的。同时,该系统具备良好的凝血效果,减少了手术风险与术后恢复时间,是现代微创手术的重要工具。
资源:14929个 浏览:70次展开
射频等离子手术系统相关内容
射频等离子手术系统资讯
-
- 预算82.8万元 兰州大学第一医院 采购术中射频等离子手术系统
- 兰州大学第一医院招标项目的潜在投标人应在甘肃省公共资源交易网(https://ggzyjy.gansu.gov.cn)在线免费获得获取招标文件,并于2025-04-16 09:00:00(北京时间)前
射频等离子手术系统产品
产品名称
所在地
价格
供应商
咨询

- 射频等离子手术电极
- 国内 山东
- 面议
-
山东蓝海医疗科技有限公司
售全国
- 我要询价 联系方式

- 手术机器人 PL300B骨科手术机器人
- 国内 江苏
- 面议
-
南京普爱医疗设备股份有限公司
售全国
- 我要询价 联系方式

- 低温等离子手术系统
- 国内 山东
- 面议
-
山东蓝海医疗科技有限公司
售全国
- 我要询价 联系方式

- 等离子手术刀头椎间孔镜手术射频电极
- 国内 山东
- 面议
-
山东蓝海医疗科技有限公司
售全国
- 我要询价 联系方式

- 低温等离子多功能手术系统
- 国内 山东
- 面议
-
山东蓝海医疗科技有限公司
售全国
- 我要询价 联系方式
射频等离子手术系统问答
- 2025-10-27 15:45:22射频功率计有什么作用
- 射频功率计在现代电子和通信领域中扮演着至关重要的角色,广泛应用于射频系统的测试、调试以及性能优化中。本文将详细介绍射频功率计的主要功能、工作原理及其在实际操作中的重要作用,帮助读者深刻理解这一设备的核心价值。 射频功率计,顾名思义,是用来测量射频信号功率的专业仪器。它在无线通信、雷达系统、卫星通信、射频前端设计等多个领域中发挥着基础性作用。通过准确测量信号的功率指标,工程师可以有效监控信号传输质量,排查系统故障,优化系统性能,以及确保产品符合相关技术标准。从微小的信号检测到大功率发射,射频功率计的精度和可靠性直接关系到系统整体的表现。 射频功率计的核心作用之一是性能验证。在射频设备的研发和制造过程中,准确测量发射功率,检验设备的输出能力,是保证设备达标和功能稳定的基础。生产线上的质量控制依赖于快速且的功率检测,确保每一台出厂的产品都能满足设计标准,避免出现性能不佳或故障隐患。调试阶段的优化也离不开射频功率计的协助,工程师可以通过实时观察功率变化,微调设备参数,达到佳工作状态。 在系统调试和维护中,射频功率计的应用也格外频繁。通信基站、天线和发射机的日常检测常常依赖于其进行信号强度和功率的检查。特别是在复杂的多路径环境或遇到干扰时,测得准确的功率信息可以帮助工程师定位问题源头,调整天线角度或改善信号路径,从而提升整个系统的稳定性和效率。射频功率计还能用于故障排查,当系统出现性能下降或信号异常时,通过测量信号功率变化,快速找到潜在问题。 射频功率计的工作原理主要基于功率检测技术。它通常由探头、检测电路以及显示屏组成。信号进入设备后,经过检测电路转换成可测量的电压或电流信号,经过校准和处理后,显示出对应的功率值。当前,许多先进的射频功率计还配备了数字接口、数据存储和远程控制功能,使得测试过程更为便捷高效。不同频段的功率计具有不同的频率范围和动态范围,用户可根据实际需求选择合适的设备,以确保测量的准确性和适用性。 在面对高速发展的无线通信技术时,射频功率计的角色也不断演变。随着5G、6G的发展,频谱更加分散、信号复杂度增加,对测量设备的要求也越来越高。高性能的射频功率计不仅要具有更宽的频率范围和更高的测量精度,还需要支持多通道、多点测试技术,以满足多频段、多应用场景的需求。智能化和自动化也是未来的趋势,通过智能算法优化测量流程,提升测试效率。 射频功率计在确保无线通信设备正常运转、提高系统效率及保证产品质量方面扮演着不可替代的角色。从研发、生产、调试到维护,每一个环节都离不开其精确的测量能力。随着技术不断进步,射频功率计的发展方向也将更为智能化、多功能化,继续推动通信技术的创新和发展。这种设备的应用不仅关系到通信行业的基础建设,也直接影响着未来信息社会的数字化、智能化水平。
30人看过
- 2025-10-27 15:45:23射频功率计有辐射吗
- 射频功率计有辐射吗?解析射频功率计的辐射问题 射频功率计是用于测量射频信号功率的专业仪器,广泛应用于无线通信、电子工程、科研等多个领域。在日常使用中,很多人对射频功率计的安全性存在疑问,尤其是其是否会产生辐射。本文将详细解析射频功率计是否会产生辐射,以及相关的安全性问题,以帮助读者更好地了解这一仪器的工作原理和使用注意事项。 射频功率计的工作原理 射频功率计的核心功能是测量射频信号的功率大小,通常用于频率范围从几十MHz到数GHz的射频信号测量。这些设备通过接收和分析射频信号,将信号强度转换为数字显示或模拟值,从而帮助工程师或科研人员精确调整设备工作参数。 射频功率计主要由接收单元、处理单元和显示单元组成。接收单元通常通过探头或传感器获取射频信号,经过处理单元的算法处理后,终显示信号的功率值。为了确保测量的准确性和精度,射频功率计必须对不同频率的信号做出响应,同时要有一定的动态范围来应对信号强度变化。 射频功率计与辐射的关系 射频功率计本身并不会直接产生辐射。实际上,它的设计目的是通过测量已有射频信号的功率值,而不是产生或增强射频信号。因此,射频功率计自身并不会向外辐射能量。相反,射频功率计通常会通过专门设计的探头与测量电路对信号进行“被动”接收,即探头接收到的射频信号通过内部电路处理,并不会将这些信号转化为外部辐射。 射频功率计在测量过程中需要接触到射频信号源,因此在测量信号较强的场合时,探头附近的环境可能会出现一定程度的电磁场强度,这也是任何射频测量设备都无法避免的现象。只不过,这种电磁场强度一般是局部的,且由于设计上的屏蔽措施,通常不会对人体产生危害。 电磁辐射与射频功率计的使用环境 虽然射频功率计本身不产生辐射,但在实际使用过程中,周围环境的射频辐射水平仍然需要特别注意。例如,测量设备周围的射频发射源(如基站、雷达设备、广播设备等)可能会对周围产生一定的电磁场强度。为了确保工作人员的安全,射频功率计通常配备了良好的屏蔽设计,以防止外部高功率射频信号对仪器产生干扰。 使用射频功率计的环境应该符合相关的安全标准和规定。在一些高功率射频源附近,操作人员需要佩戴合适的防护设备,避免长时间暴露于高强度的电磁场中。根据国际电工委员会(IEC)和其他相关机构的标准,对于高频信号的大安全暴露限值有明确规定,操作时必须严格遵守这些安全规范。 射频功率计的安全性分析 射频功率计的安全性分析主要集中在其是否会对使用者构成电磁辐射危害。根据现有的研究与使用规范,射频功率计的辐射水平在正常使用条件下是完全安全的。射频功率计的工作原理本身就是“被动”接收信号,并不会主动发射任何电磁波。相比于射频发射器或其他高功率射频设备,射频功率计的辐射强度微乎其微。 射频功率计在设计时一般会考虑到电磁兼容性(EMC)和电磁辐射限制,符合相关的国际标准。大部分射频功率计还会进行严格的屏蔽处理,减少外部射频信号的影响,从而提高测量的准确性和安全性。因此,从理论和实践角度来看,射频功率计不会对人体健康造成危害。 如何安全使用射频功率计 尽管射频功率计本身不会辐射高强度的电磁波,但在高功率射频源附近进行测量时,仍然需要注意操作安全。操作人员应当避免长时间近距离接触高功率射频设备或暴露在强电磁场中。使用射频功率计时应选择合适的场所,确保测量设备具备良好的屏蔽和接地措施,减少外部干扰。 特别是在一些高功率测试环境中,建议操作人员佩戴适当的防护设备,例如电磁辐射屏蔽服,来降低潜在的辐射风险。 结论 射频功率计在设计和应用中并不会产生有害的电磁辐射。其本质上是一个被动的测量工具,主要用于检测已有射频信号的功率大小。虽然在测量过程中,设备周围的电磁环境需要关注,但总体来说,射频功率计的使用是安全的。通过合理的设计和合规的使用,射频功率计能够提供高精度的测量结果,而不对操作者构成健康风险。
45人看过
- 2022-11-28 13:28:03射频、微波产品-欢迎咨询
- 大功率宽带固态连续波功率放大器(频率范围:4kHz-100GHz,功率范围:1W-50kW)频率0.35~0.4GHz-功率60dBm-增益±1.5dB频率0.44~0.52GHz-功率60dBm-增益±1.5dB频率0.1~0.7GHz-功率53dBm-增益±5dB频率0.5~1.0GHz-功率57dBm-增益±3dB频率1.2 ~1.4GHz-功率60dBm-增益±1dB频率1.4~1.6GHz-功率57dBm-增益±1dB频率1.8 -2.2GHz-功率60dBm-增益±1.5dB频率2.7~3.1GHz-功率57dBm-增益±0.5dB频率3.4~3.8GHz-功率57dBm-增益±1.5dB频率4.5~4.8GHz-功率53dBm-增益±2dB频率2.5~6.0GHz-功率55dBm-增益±1dB频率1.0~6.0GHz-功率53dBm-增益±2dB频率6.0~18.0GHz-功率53dBm-增益±1dB频率18.0~26.5GHz-功率50dBm-增益±1dB频率26.5~40.0GHz-功率46dBm-增益±1dB频率58.0~62.0GHz-功率37dBm-增益±1dB电磁兼容系统、无源器件互调测试、无源器件功率容限测试、无线通信干扰和对抗系统、空间探索、高能物理、计量检测和医疗设备等 大功率宽带固态脉冲波功率放大器[频率范围:4kHz-45GHz,功率范围:100W-500kw(占空比0.1%-10%可调)]频率0.728~0.96GHz-功率66dBm-增益±1.5dB频率1.4~1.6 GHz-功率63dBm-增益±1.5dB频率1.805~2.17 GHz-功率66dBm-增益±1.5dB频率2.3~2. 7GHz-功率66dBm-增益±1.5dB频率3.4~3.8 GHz-功率66dBm-增益±1.5dB频率4.5~4.8 GHz-功率63dBm-增益±1.5dB频率5.1~5.9 GHz-功率63dBm-增益±1.5dB应用领域:电磁兼容系统、无源器件功率容限测试、无线通信干扰和对抗系统、空间探索、高能物理等。 大功率宽带固态脉冲和连续波功率放大器(频率范围4kHz-6GHz,功率范围:连续波10W-1kW,脉冲波100W-10kW)频率0.728~0.96GHz-功率69dBm-增益±1.5dB频率1.805~2.17GHz-功率69dBm-增益±1.5dB频率2.3~2.7GHz-功率69dBm-增益±1.5dB应用领域:无源器件互调测试、无源器件功率容限测试、无线通信干扰和对抗系统、计量检测等。 大功率宽带TWT功率放大器(频率范围:1GHz-40GHz,功率范围:20W-500W)频率6~18GHz-功率53dBm-增益±1.5dB频率18~26.5GHz-功率50dBm-增益±1.5dB频率26.5~40GHz-功率46dBm-增益±1.5dB应用领域:电磁兼容系统、无源器件互调测试、无源器件功率容限测试、无线通信干扰和对抗系统、空间探索、高能物理计量检测和医疗设备等。工作频段及输出功率可根据用户要求定制 输入频率范:1695±15MHz,输出频率: 132.5±15MHz, 增益:63dB±2dB(常温)\60dB-70dB(-40℃-- +55℃)高频头LNB RF输入频率: 800-900MHz, RF输入功率: -10~10dBm,输出功率: 9.3-9.4 GHz---上变频器RF输入频率: 800-900MHz, RF输入功率: -10~10dBm,Gain: 20-25 dB----下变频器 中心频率: 10.2GHz. 输出功率: 200W, 输入功率: 10mW---X波段固态功放模块 宽带固态连续波功率放大器模块(宽带连续波功率:1W-50W,频率:10kHz-18GHz)频率:1.0~2.0GHz -功率47dBm-增益47dB频率:1.0~3.0GHz -功率43dBm-增益43dB频率:1.0~6.0GHz -功率43dBm-增益43dB频率:2.0~4.0GHz -功率43dBm-增益43dB频率:2.0~6.0GHz -功率43dBm-增益43dB频率:6.0~18.0GHz -功率43dBm-增益43dB 频率: 824-849MHz, 抑治: ≥60dB, 频率: 800-1000MHz, 抑治: ≥30dB,频率: 1710-1755MHz, 抑治: ≥60dB, 频率: 1920-2170MHz, 抑治: ≥50dB,频率: 2110-2155MHz, 抑治: ≥60dB, 频率: 2110-2170MHz, 抑治: ≥40dB, 频率: 2300 –2400MHz, 抑治: ≥50dB, 带阻滤波器技 频率: 925-960MHz, 抑治: >50 dB, 频率: 1550-1620MHz, 抑治: ≥30 dB,频率: 1805-1880MHz, 抑治: >50 dB, 频率: 1893~1915MHz, 抑治: >50 dB,频率: 2400-2483MHz, 抑治: ≥30 dB,频率: 31.92-435.92MHz, 抑治: ≥30 dB, 带通滤波器 腔体滤波器|介质滤波器|介质双工器|LC滤波器|LC双工器| 0.3-2GHz-Vivaldi天线-水平、垂直双线极化- > -10dBi增益- SMA-50K2-8GHz-角锥喇叭天线-单线极化- 8~12dB增益- SMA-50K2-18GHz -角锥喇叭天线-单线极化- 8~12dB增益- SMA-50K6-18GHz -角锥喇叭天线-单线极化- 10~18dB增益- SMA-50K0.8-18GHz -圆锥喇叭天线-水平、垂直交叉极化--4~18dB增益- 2.92mm1-18GHz -圆锥喇叭天线-水平、垂直交叉极化- 2~21dB(需要补测1-2GHz)增益- SMA-50K6-18GHz -圆锥喇叭天线-水平、垂直交叉极化- 12~18dB增益- SMA-50K8-23GHz-圆锥喇叭天线-水平、垂直交叉极化- 13~19dB增益- SMA-50K18-40GHz-圆锥喇叭天线-水平、垂直交叉极化- 14~20dB增益- SMA-K34-36GHz-圆锥喇叭天线-水平、垂直交叉极化- 18dB增益- 2.92-50K 联系方式(18013849410)微信同号
147人看过
- 2023-03-14 12:04:54等离子去胶机(Plasma Cleaner)
- 等离子去胶机(Plasma Cleaner) 为何要去除光刻胶?在现代半导体生产过程中,会大量使用光刻胶来将电路板图图形通过掩模版和光刻胶的感光与显影,转移到晶圆光刻胶上,从而在晶圆表面形成特定的光刻胶图形,然后在光刻胶的保护下,对下层薄膜或晶圆基底完成进行图形刻蚀或离子注入,最后再将原有的光刻胶彻底去除。去胶是光刻工艺中的最后一步。在刻蚀/离子注入等图形化工艺完成后,晶圆表面剩余光刻胶已完成图形转移和保护层的功能,通过去胶工艺进行完全清除。光刻胶去除是微加工工艺过程中非常重要的环节,光刻胶是否彻底去除干净、对样片是否有造成损伤,都会直接影响后续集成电路芯片制造工艺效果。 半导体光刻胶去除工艺有哪些?半导体光刻胶去除工艺,一般分成两种,湿式去光刻胶和干式去光刻胶。湿式去胶又根据去胶介质的差异,分为氧化去胶和溶剂去胶两种类别。干式去胶适合大部分去胶工艺,去胶彻底且速度快,是现有去胶工艺中zui好的方式。 一、等离子去胶机简述:氧等离子去胶是利用氧气在微波发生器的作用下产生氧等离子体,具有活性的氧等离子体与有机聚合物发生氧化反应,使有机聚合物被氧化成水蒸汽和二氧化碳等排除腔室,从而达到去除光刻胶的目的,这个过程我们有时候也称之为灰化或者剥离。氧等离子去胶相比于湿法去胶工艺更为简单、适应性更好,去胶过程纯干法工艺,无液体或者有机溶剂参与。当然我们需要注意的是,这里并不是说氧等离子去胶工艺100%好于湿法去胶,同时也不是所有的光刻胶都适用于氧等离子去胶,以下几种情形我们需要注意:① 部分稳定性极高的光刻胶如SU-8、PI(聚酰亚胺),往往胶厚也比较大,纯氧等离子体去胶速率也比较有限,为了保证快速去胶,往往还会在工艺气体中增加氟基气体增加去胶速率,因此不只是氧气是反应气体,有时候我们也需要其他气体参与;② 涂胶后形成类非晶态二氧化硅的HSQ光刻胶。由于其构成并不是单纯的碳氢氧,所以是无法使用氧等离子去胶机来实现去胶;③ 当我们的样品中有其他需要保留的结构层本身就是有机聚合物构成的,在等离子去胶的过程中,这些需要保留的层也可能会在氧等离子下发生损伤;④ 样品是由容易氧化的材料或者有易氧化的结构层,氧等离子去胶过程,这些材料也会被氧化,如金属AG、C、CR、Fe以及Al,非金属的石墨烯等二维材料; 市面上常见氧等离子去胶机按照频率可分为微波等离子去胶机和射频等离子去胶机两种,微波等离子去胶机的工作频率为2.45GHz,射频等离子去胶机的工作频率为13.5MHz,更高的频率决定了等离子体拥有更高的离子浓度、更小的自偏压,更高的离子浓度决定了去胶速度更快,效率更高;更低的自偏压决定了其对衬底的刻蚀效应更小,也意味着去胶过程中对衬底无损伤,而射频等离子去胶机其工作原理与刻蚀机相似,结构上更加简单。因此,在光电器件的加工中,去胶机的选择更推荐使用损伤更小的微波等离子去胶机。 二、等离子清洗去胶机的工作原理:氧气是干式等离子体脱胶技术中的首要腐蚀气体。它在真空等离子体脱胶机反应室内高频和微波能的作用下,电离产生氧离子、自由氧原子O*、氧分子和电子混合的等离子体,其间氧化能力强的自由氧原子(约10-20%)在高频电压作用下与光刻胶膜发生反应:O2→O*+O*,CxHy+O*→CO2↑+H2O↑。反应后产生的CO2和H2O然后被抽走。 三、等离子去胶机的优势:1、等离子清洗机的加工过程易于控制、可重复且易于自动化;使用等离子扫胶机可以使得清洗效率获得更大的提高。整个清洗工艺流程几分钟内即可完成,因此具有产率高的特点2、等离子扫胶机清洗对象经等离子清洗之后是干燥的,不需要再经干燥处理即可送往下一道工序,可以提高整个工艺流水线的处理效率;3、等离子扫胶机使得用户可以远离有害溶剂对人体的伤害,同时也避免了湿法清洗中容易洗坏清洗对象的问题;4、避免使用ODS有害溶剂,这样清洗后不会产生有害污染物,因此这种清洗方法属于环保的绿色清洗方法;5、等离子去胶机采用无线电波范围的高频产生的等离子体与激光等直射光线不同,等离子体的方向性不强,这使得它可以深入到物体的微细孔眼和凹陷的内部完成清洗任务,因此不需要过多考虑被清洗物体的形状;6、等离子去胶机在完成清洗去污的同时,还可以改良材料本身的表面性能,如提高表面的润湿性能、改良膜的黏着力等,这在许多应用中都是非常重要的。 四、等离子去胶的主要影响因素:频率选择:频率越高,氧越易电离形成等离子体。频率太高,以至电子振幅比其平均自由程还短,则电子与气体分子碰撞几率反而减少,使电离率降低。一般常用频率为 13.56MHz及2.45GHZ 。功率影响:对于一定量的气体,功率大,等离子体中的的活性粒子密度也大,去胶速度也快;但当功率增大到一定值,反应所能消耗的活性离子达到饱和,功率再大,去胶速度则无明显增加。由于功率大,基片温度高,所以应根据工艺需要调节功率。真空度的选择:适当提高真空度,可使电子运动的平均自由程变大,因而从电场获得的能量就大,有利电离。另外当氧气流量一定时,真空度越高,则氧的相对比例就大,产生的活性粒子浓度也就大。但若真空度过高,活性粒子浓度反而会减小。氧气流量的影响:氧气流量大,活性粒子密度大,去胶速率加快;但流量太大,则离子的复合几率增大,电子运动的平均自由程缩短,电离强度反而下降。若反应室压力不变,流量增大,则被抽出的气体量也增加,其中尚没参加反应的活性粒子抽出量也随之增加, 因此流量增加对去胶速率的影响也就不甚明显。 五、等离子去胶机的应用:1、光刻胶的去除、剥离或灰化2、SU-8的去除/ 牺牲层的去除3、有机高分子聚合物的去除4、等离子去除残胶/去浮渣/打底膜5、失效分析中的扁平化处理6、表面沾污清除和内腐蚀(深腐蚀)应用7、清洗微电子元件,电路板上的钻孔或铜线框架8、剥离金属化工艺前去除浮渣9、提高黏附性,消除键合问题10、塑料的表面改型:O2处理以改进涂覆性能11、产生亲水或疏水表面
527人看过
- 2023-06-25 11:45:31【Leica in Scope课程】前节手术的技术趋势:术中OCT与3D可视化手术
- 第四期:前节手术的技术趋势:术中OCT与3D可视化手术课程简介:来自英国南安普顿大学医院的David Anderson医师和来自罗马尼亚Oculus 眼科诊所的Ozana Moraru博士将分享新兴技术趋势如何改变眼前节手术。他们将通过临床病例和手术视频讨论术中OCT和3D的价值。讲者:Mr. David Anderson 高级眼科顾问医师南安普顿大学医院 英国Dr. Ozana Moraru眼科医师欧科路斯眼科诊所 罗马尼亚
161人看过


